
DOMjudge Administrator's Manual

by the DOMjudge team Wed, 6 May 2020 14:59:35 +0200

This document provides information about DOMjudge installation, con�guration and operation for the DOMjudge

administrator. A separate manual is available for teams and for jury members. Document version: 98088c1

Contents

1 DOMjudge overview 4

1.1 Features . 4

1.2 Requirements . 4

1.3 Copyright and licencing . 5

1.4 Contact . 6

2 Contest planning 7

2.1 Contest hardware . 7

2.2 Requirements . 7

3 Installation and con�guration 10

3.1 Quick installation . 10

3.2 Prerequisites . 11

3.3 Installation system . 13

3.4 Database installation . 14

3.5 Web server con�guration . 15

3.6 Fine tuning server settings . 16

3.7 Installation of a judgehost . 16

3.8 Building and installing the submit client . 18

3.9 Con�guration . 19

3.10 Authentication Methods . 19

3.11 Executables . 20

3.12 Con�guration of languages . 20

3.13 Con�guration of special run and compare programs . 21

3.14 Alerting system . 22

3.15 Other con�gurable scripts . 22

3.16 Logging & debugging . 22

3.17 (Re)generating documentation and the team manual . 23

3.18 Optional features . 23

2

CONTENTS 3

3.19 Upgrading . 25

4 Setting up a contest 26

4.1 Con�gure the contest data . 26

4.2 Contest milestones . 30

4.3 Providing testdata . 30

4.4 Start the daemons . 31

4.5 Check that everything works . 31

4.6 Testing jury solutions . 31

5 Team Workstations 32

6 Web interface 33

6.1 Jury and Administrator view . 33

6.2 The scoreboard . 33

6.3 Balloons . 35

7 Security 36

7.1 Considerations . 36

7.2 Internal security . 36

7.3 Root privileges . 37

7.4 File system privileges . 37

7.5 External security . 37

A Common problems and their solutions 38

A.1 The Java virtual machine (jvm) and memory limits . 38

A.2 Java class naming . 38

A.3 Memory limit errors in the web interface . 39

A.4 Compiler errors: `runguard: root privileges not dropped' . 39

A.5 found processes still running ... apport . 39

A.6 Enforcement of time limits . 39

B API 41

C Multi-site contests 42

D Developer information 43

D.1 Bootstrapping from Git repository sources . 43

D.2 Maintainer mode installation . 43

D.3 Make�le structure . 44

1 DOMjudge overview

DOMjudge is a system for running programming contests, like the ICPC regional and world championship

programming contests.

This means that teams are on-site and have a �xed time period (mostly 5 hours) and one computer to solve a

number of problems (mostly 8-11). Problems are solved by writing a program in one of the allowed languages,

that reads input according to the problem input speci�cation and writes the correct, corresponding output.

The judging is done by submitting the source code of the solution to the jury. There the jury system

automatically compiles and runs the program and compares the program output with the expected output.

This software can be used to handle the submission and judging during such contests. It also handles

feedback to the teams and communication on problems (clari�cation requests). It has web interfaces for the

jury, the teams (their submissions and clari�cation requests) and the public (scoreboard).

1.1 Features

A global overview of the features that DOMjudge provides:

• Automatic judging with distributed (scalable) judge hosts

• Web interface for portability and simplicity

• Modular system for plugging in languages/compilers and validators

• Detailed jury information (submissions, judgings, di�s) and options (rejudge, clari�cations, resubmit)

• Designed with security in mind

DOMjudge has been used in many live contests (see <https://www.domjudge.org/about> for an overview)

and is Open Source, Free Software.

1.2 Requirements

This is a (rough) list of the requirements for DOMjudge.

• At least one machine running Linux, with (sudo) root access

• nginx or Apache web server with PHP 7.0.0 or newer and PHP-command line interface

• MySQL or MariaDB database server version 5.3.3 or newer

• Compilers for the languages you want to support

A 2.2 (detailed list of requirements) is contained in the 3 (Installation and Con�guration) chapter.

4

https://www.domjudge.org/about

CHAPTER 1. DOMJUDGE OVERVIEW 5

1.3 Copyright and licencing

DOMjudge is developed by Jaap Eldering, Nicky Gerritsen, Keith Johnson, Thijs Kinkhorst and Tobias

Werth; Peter van de Werken has retired as developer. Many other people have contributed (apologies for

any oversights): Michael Baer, Jeroen Bransen, Matt Claycomb, Stijn van Drongelen, Rob Franken, Marc

Furon, Matt Hermes, Michal Kaczanowicz, Jacob Kleerekoper, Ruud Koot, Ilya Kornakov, Jan Kuipers,

Robin Lee, Richard Lobb, Alex Muntada, Dominik Paulus, Bert Peters, Mart Pluijmaekers, Tobias Polzer,

Jeroen Schot, Matt Steele, Shuhei Takahashi, Hoai-Thu Vuong, Jeroen van Wol�elaar, and Github users

mpsijm, sylxjtu. Some code has been ported from the ETH Zurich fork by Christoph Krautz, Thomas Rast

et al.

DOMjudge is Copyright (c) 2004 - 2020 by the DOMjudge developers and its contributors.

DOMjudge, including its documentation, is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License <http://www.gnu.org/copyleft/gpl.html> as published by the

Free Software Foundation; either version 2, or (at your option) any later version. See the �le COPYING.

This software is partly based on code by other people. These acknowledgements are made in the respective

�les, but we would like to name them here too (with non-GPL licences listed where applicable):

• dash (i386) is included, statically compiled from the Debian dash sources (copyright by various

people under the BSD licence and a part under the GNU GPL version 2. See COPYING.BSD

doc/dash.copyright for more details). Sources can be downloaded from: <https://www.domjudge.

org/sources/> .

• basename.h is a modi�ed version from the GNU libiberty library (copyright Free Software Foundation).

• lib.database.php by Jeroen van Wol�elaar et al.

• runguard.c was originally based on timeout from The Coroner's Toolkit by Wietse Venema.

• jscolor.js by Jan Odvarko, licensed under the GNU LGPL. It was obtained at <http://jscolor.com>

.

• tabber.js by Patrick Fitzgerald, licensed under the MIT licence, see COPYING.MIT. It was downloaded

from

<http://www.barelyfitz.com/projects/tabber/> .

• Ace code editor by Ajax.org B.V., licensed under the BSD licence, see COPYING.BSD. It was downloaded

from

<https://github.com/ajaxorg/ace-builds> , the src-min-noconflict version.

• jQuery JavaScript library by the jQuery Foundation, licensed under the MIT licence, see COPYING.MIT.

It was downloaded from <http://jquery.com/> .

• jQuery TokenInput by James Smith, dual licensed under the GPL and MIT licences, see COPYING and

COPYING.MIT. It was downloaded from

<https://github.com/loopj/jquery-tokeninput> .

• JavaScript Cookie by Klaus Hartl and Fagner Brack, licensed under the MIT licence, see COPYING.MIT.

It was downloaded from <https://github.com/js-cookie/js-cookie> .

• The Spyc PHP YAML parser by Chris Wanstrath and Vlad Andersen, licensed under the MIT licence,

see COPYING.MIT. It was downloaded from <https://github.com/mustangostang/spyc/> .

http://www.gnu.org/copyleft/gpl.html
https://www.domjudge.org/sources/
https://www.domjudge.org/sources/
http://jscolor.com
http://www.barelyfitz.com/projects/tabber/
https://github.com/ajaxorg/ace-builds
http://jquery.com/
https://github.com/loopj/jquery-tokeninput
https://github.com/js-cookie/js-cookie
https://github.com/mustangostang/spyc/

CHAPTER 1. DOMJUDGE OVERVIEW 6

• The default compare script was included from the Kattis problemtools package, and licensed under the

MIT licence, see COPYING.MIT. It was downloaded from

<https://github.com/Kattis/problemtools/tree/master/support/default_validator> .

• The DOMjudge logo is based on the NKP 2004 logo made by Erik van Sebille.

• Several icons have been taken from the phpMyAdmin project.

• Several M4 autoconf macros from the Autoconf archive by various people are included under m4/.

These are licensed under all-permissive and GPL3+ licences; see the respective �les for details.

1.3.1 About the name and logo

The name of this judging system is inspired by a very important and well known landmark in the city of

Utrecht: the dome tower, called the `Dom' in Dutch. The logo of the 2004 Dutch Programming Champi-

onships (for which this system was originally developed) depicts a representation of the Dom in zeros and

ones. We based the name and logo of DOMjudge on that.

We would like to thank Erik van Sebille, the original creator of the logo. The logo is under a GPL licence,

although Erik �rst suggested a "free as in beer" licence �rst: you're allowed to use it, but you owe Erik a

free beer in case might you encounter him.

1.4 Contact

The DOMjudge homepage can be found at: https://www.domjudge.org/

We have a low volume mailing list for announcements of new releases.

The authors can be reached through the development mailing list: domjudge-devel@domjudge.org . You

need to be subscribed before you can post. See the list information page for subscription and more details.

DOMjudge has a Slack workspace where a number of developers and users of DOMjudge linger. Feel free

to drop by with your questions and comments, but note that it may sometimes take a bit longer than a few

minutes to get a response, partly because people might be in di�erent timezones.

https://github.com/Kattis/problemtools/tree/master/support/default_validator
http://www.gnu.org/software/autoconf-archive/
https://www.domjudge.org/
https://www.domjudge.org/mailman/listinfo/domjudge-announce
mailto:domjudge-devel@domjudge.org
https://www.domjudge.org/mailman/listinfo/domjudge-devel
https://www.domjudge.org/chat

2 Contest planning

2.1 Contest hardware

DOMjudge discerns the following kinds of hosts:

Team computer

Workstation for a team, where they develop their solutions and from which they submit them to the

jury system. The only part of DOMjudge that runs here is the optional command line submit client;

all other interaction by teams is done with a browser via the web interface.

DOMjudge server

A host that receives the submissions, runs the database and serves the web pages. This host will run

the nginx or Apache webserver and MySQL or MariaDB database. Also called domserver for brevity.

Judgehosts

A number of hosts, at least one, that will retrieve submitted solutions from the DOMjudge server,

compile and run them and send the results back to the server. They will run the judgedaemon from

DOMjudge.

Jury / admin workstations

The jury members (persons) that want to monitor the contest need just any workstation with a web

browser to access the web interface. No DOMjudge software runs on these machines.

One (virtual) machine is required to run the DOMserver. The minimum amount of judgehosts is also one,

but preferably more: depending on con�gured timeouts, judging one solution can tie up a judgehost for

several minutes, and if there's a problem with one judgehost it can be resolved while judging continues on

the others.

As a rule of thumb, we recommend one judgehost per 20 teams.

However, overprovisioning does not hurt: DOMjudge scales easily in the number of judgehosts, so if hardware

is available, by all means use it. But running a contest with fewer machines will equally work well, only the

waiting time for teams to receive an answer may increase.

Each judgehost should be a dedicated (virtual) machine that performs no other tasks. For example, although

running a judgehost on the same machine as the domserver is possible, it's not recommended except for testing

purposes. Judgehosts should also not double as local workstations for jury members. Having all judgehosts

be of uniform hardware con�guration helps in creating a fair, reproducible setup; in the ideal case they are

run on the same type of machines that the teams use.

DOMjudge supports running multiple judgedaemons in parallel on a single judgehost machine. This might

be useful on multi-core machines. Note that although each judgedaemon process can be bound to one single

CPU core (using Linux cgroups), shared use of other resources such as disk I/O might still have a minor

e�ect on run times. For more details on using this, see the section 3.18 (Installation: optional features).

2.2 Requirements

2.2.1 System requirements

The requirements for the deployment of DOMjudge are:

7

CHAPTER 2. CONTEST PLANNING 8

• Computers for the domserver and judgehosts must run Linux (or the domserver possibly a Unix vari-

ant). This software has been developed mostly under Debian GNU/Linux, and the manual adds some

speci�c hints for that, which also apply to Debian derivative distributions like Ubuntu. DOMjudge has

also been tested under RedHat-like Linux distributions. We try to adhere to POSIX standards, but

especially the judgehost security solution is Linux-speci�c.

• (Local) root access on the domserver and judgehosts for con�guring sudo, installing some �les with

restricted permissions and for (un)mounting the proc �le system. See 7.3 (Security: root privileges)

for more details.

• A TCP/IP network which connects all DOMjudge and team computers. Extra network security which

restricts internet access and access to other services (ssh, mail, talk, etc..) is advisable, but not provided

by this software, see 7.5 (Security: external security) for more details. All network-based interactions

are done over HTTP or HTTPS (tcp port 80 or 443):

� HTTP tra�c from teams, the public and jury to the web server.

� The judgehosts connect to the DOMjudge API on the webserver over HTTP(S).

� The `submit' command line client connects to API on the web server also via HTTP(S).

When using the "IP Address" authentication scheme, then each team computer needs to have a unique

IP address from the view of the DOMjudge server, see 3.10 (Authentication Methods) for more details.

2.2.2 Software requirements

The following software is required for running DOMjudge.

• For every supported programming language a compiler is needed; preferably one that can generate

statically linked stand-alone executables.

• nginx web server with PHP FPM or Apache web server with mod_rewrite.

• PHP >= 7.2.5, either using FPM or Apache's mod_php. The the mysqli, GD, curl, json, mbstring,

intl, zip and XML extensions for PHP should be enabled. We also recommend the posix extension for

extra debugging information.

• MySQL or MariaDB database and client software.

• PHP >= 7.2.5 command line interface and the curl and json extensions.

• A POSIX compliant shell in /bin/sh (e.g. bash or ash).

• A statically compiled POSIX shell, located in lib/judge/sh-static (dash is included for Linux

i386/amd64).

• libcgroup , to enable support for Linux cgroup accounting and security on the judgehosts. See section

3.7 (installation of a judgehost).

• A lot of standard (GNU) programs, a probably incomplete list: hostname, date, dirname, basename,

touch, chmod, cp, mv, cat, grep, di�, wc, mkdir, mk�fo, mount, sleep, head, tail, pgrep, zip, unzip.

• Sudo to gain root privileges.

• A LaTeX installation to regenerate the team PDF-manual with site speci�c con�guration settings

included.

The following items are optional, but may be required to use certain functionality or are generally useful.

http://libcg.sourceforge.net/

CHAPTER 2. CONTEST PLANNING 9

• phpMyAdmin , to be able to access the database in an emergency or for data import/export

• An NTP daemon (for keeping the clocks between jury system and team workstations in sync)

• libcurl and libJSONcpp to use the command line submit client.

• libmagic (for command line submit client to detect binary �le submissions)

• PECL xdi� extension (to reliably make di�s between submissions, DOMjudge will try alternative

approaches if it is not available)

• beep for audible noti�cation of errors, submissions and judgings, when using the default alert script.

Software required for building DOMjudge:

• gcc and g++ with standard libraries. Other compilers and libraries might also work: we have success-

fully compiled DOMjudge sources with Clang from the LLVM project; the C library should support

the POSIX.1-2008 speci�cation.

• GNU make

2.2.3 Requirements for team workstations

In the most basic setup the team workstations only need (next to the tools needed for program development)

a modern web browser. We support all versions of Firefox, Chrome and Edge.

https://www.phpmyadmin.net/
https://curl.haxx.se/libcurl/
https://github.com/open-source-parsers/jsoncpp
https://www.darwinsys.com/file/
https://pecl.php.net/package/xdiff
http://www.johnath.com/beep/
https://clang.llvm.org/

3 Installation and con�guration

This chapter details a fresh installation of DOMjudge. The �rst section is a Quick Installation Reference,

but that should only be used by those already acquainted with the system. A detailed guide follows after

that.

3.1 Quick installation

Note: this is not a replacement for the thorough installation instructions below, but more a cheat-sheet for

those who've already installed DOMjudge before and need a few hints. When in doubt, always consult the

full installation instruction.

External software:

• Install the MySQL- or MariaDB-server and set a root password for it.

• Install either nginx or Apache, PHP and (recommended) phpMyAdmin.

• Make sure PHP works for the web server and command line scripts.

• Install necessary compilers on the judgehosts.

• See also 3.2 (an example command line for Debian and RedHat).

DOMjudge:

• Extract the source tarball and run ./configure [�enable-fhs|�prefix=<basepath>]
�with-baseurl=<url>.

• Run make domserver judgehost docs or just those targets you want installed on the current host.

• Run make install-{domserver,judgehost,docs} as root to install the system.

On the domserver host:

• Install the MySQL database using e.g. bin/dj_setup_database -u root -r install on the dom-

server host.

• For Apache: add etc/apache.conf to your Apache con�guration, edit it to your needs, reload web

server:

sudo ln -s <INSTALL_PATH>/domserver/etc/apache.conf /etc/apache2/conf-available/domjudge.conf

&& sudo a2enmod rewrite && sudo a2enconf domjudge && sudo apache2ctl graceful

• For nginx: add etc/nginx-conf to your nginx con�guration and add etc/domjudge-fpm.conf to

your PHP FPM pool directory, edit it to your needs, reload web server:

sudo ln -s <INSTALL_PATH>/domserver/etc/nginx-conf /etc/nginx/sites-enabled/domjudge

&& sudo ln -s <INSTALL_PATH>/domserver/etc/domjudge-fpm.conf

/etc/php/7.0/fpm/pool.d/domjudge.conf && sudo service nginx reload

• Check that the web interface works (/team, /public and /jury).

• Check that the API (/api) works and create credentials for the judgehosts.

10

CHAPTER 3. INSTALLATION AND CONFIGURATION 11

• Create teams, user accounts and add useful contest data through the jury web interface or with php-

MyAdmin.

• Run the con�g checker in the jury web interface.

On the judgehosts:

• useradd -d /nonexistent -U -M -s /bin/false domjudge-run

• Add to /etc/sudoers.d/ or append to /etc/sudoers the sudoers con�guration as in

etc/sudoers-domjudge.

• Set up cgroup support: enable kernel parameters in /etc/default/grub and reboot, then use

misc/create_cgroups to create cgroups for DOMjudge.

• Put the right credentials in the �le etc/restapi.secret on all judgehosts (copied from the domserver).

• Start the judge daemon: bin/judgedaemon

It should be done by now. As a check that (almost) everything works, the set of test sources can be submitted:

cd tests

make check

Note that this requires some con�guration depending on the AUTH_METHOD selected in

etc/domserver-config.php, see 3.8 (submit client con�guration) for more details.

Then, in the main jury web interface, select the admin link judging veri�er to automatically verify most of

the test sources, except for a few with multiple possible outcomes; these have to be veri�ed by hand. Read

the test sources for a description of what should (not) happen.

Optionally:

• Install the submit client on the team workstations.

• Start the balloon noti�cation daemon: cd bin; ./balloons; or use the balloon web interface.

• On the judgehosts, create a pre-built chroot tree:

sudo bin/dj_make_chroot [optional arguments]

$EDITOR lib/judge/chroot-startstop.sh

Modifying chroot-startstop.sh is typically not necessary, but might be in circumstances where your

interpreters are not installed under /usr or require �les from other locations. See also the section 3.7.3

(creating a chroot environment).

• For additional features in the jury web interface, the following PHP extensions can be installed:

� xdi� PECL extension for di�s between submissions;

3.2 Prerequisites

For a detailed list of the hardware and software requirements, please refer to the previous chapter on contest

planning.

CHAPTER 3. INSTALLATION AND CONFIGURATION 12

3.2.1 Debian and RedHat installation commands

For your convenience, the following command will install needed software on the DOMjudge server as men-

tioned above when using Debian GNU/Linux, or one of its derivate distributions like Ubuntu.

sudo apt install gcc g++ make zip unzip mariadb-server \

apache2 php php-cli libapache2-mod-php php-zip \

php-gd php-curl php-mysql php-json php-xml php-intl php-mbstring \

acl bsdmainutils ntp phpmyadmin python-pygments \

libcgroup-dev linuxdoc-tools linuxdoc-tools-text \

groff texlive-latex-recommended texlive-latex-extra \

texlive-fonts-recommended texlive-lang-european composer

To enable the command-line submit client, also add:

sudo apt install libcurl4-gnutls-dev libjsoncpp-dev libmagic-dev

Replace apache2, php and libapache2-mod-php with nginx, php-fpm and

apache2-utils for nginx

Note that PHP modules may need to be enabled depending on your distribution. E.g. on Ubuntu run

sudo phpenmod json

to enable the JSON module.

The following command can be used on RedHat Enterprise Linux, and related distributions like CentOS and

Fedora.

sudo yum install gcc gcc-c++ make zip unzip mariadb-server \

httpd php-gd php-cli php-intl php-mbstring php-mysqlnd \

php-xml php-zip composer python-pygments ntp linuxdoc-tools \

libcgroup-devel texlive-collection-latexrecommended texlive-wrapfig

To enable the command-line submit client, also add:

sudo yum install libcurl-devel jsoncpp-devel file-devel

Note that the TeX Live packages expdlist, moreverb, and svn still have be installed manually to rebuild

the team manuals. Furthermore, phpmyadmin is available from the Fedora EPEL repository . The package

jsoncpp-devel is available in Fedora, but not in RHEL/CentOS.

Libmagic is not strictly required, but highly recommended for detecting binary �le submissions. Pass the

option �enable-static-linking to con�gure so that these libraries are statically linked into the submit

binary and not needed on the team workstations where submit is installed.

On a judgehost, the following should be su�cient. The last two lines show some example compilers to install

for C, C++, Java (OpenJDK), Haskell and Pascal; change the list as appropriate.

For Debian:

sudo apt install make sudo debootstrap libcgroup-dev lsof \

php-cli php-curl php-json php-xml php-zip procps \

gcc g++ openjdk-8-jre-headless \

openjdk-8-jdk ghc fp-compiler

For RedHat:

https://fedoraproject.org/wiki/EPEL

CHAPTER 3. INSTALLATION AND CONFIGURATION 13

sudo yum install make sudo libcgroup-devel lsof \

php-cli php-mbstring php-xml php-process php-zip procps-ng \

gcc gcc-c++ glibc-static libstdc++-static \

java-1.7.0-openjdk-headless java-1.7.0-openjdk-devel \

ghc-compiler fpc

Note that fpc is not available in RedHat 7.

3.3 Installation system

There is a separate maintainer installation method meant for those wishing to do development on the

DOMjudge source code. See the D (appendix with developer information) and skip the rest of this section.

The DOMjudge build/install system consists of a configure script and make�les, but when installing it,

some more care has to be taken than simply running './configure && make && make install'. DOMjudge

needs to be installed both on the server and on the judgehosts. These require di�erent parts of the complete

system to be present and can be installed separately. Within the build system these parts are referred to as

domserver, judgehost and additionally docs for all documentation.

DOMjudge can be installed with two di�erent directory layouts:

Single directory tree

With this method all DOMjudge related �les and programs are installed in a single directory tree which

is speci�ed by the pre�x option of con�gure, like

./configure --prefix=$HOME/domjudge --with-baseurl=https://domjudge.example.com/

This will install each of the domserver, judgehost, docs parts in a subdirectory

$HOME/domjudge/domserver etc. These subdirectories can be overridden from the defaults

with options like �with-domserver_root=DIR, see configure �help for a complete list. The pre�x

defaults to /opt/domjudge.

Besides the installed �les, there will also be directories for logging, temporary �les, submitted sources

and judging data:

log

contains all log �les.

tmp

contains temporary �les.

submissions

(optionally) on the domserver contains all correctly submitted �les: as backup only, the database

is the authoritative source. Note that this directory must be writable by the web server for this

feature to work.

judgings

location on judgehosts where submissions are tested, each in its own subdirectory.

This method of installation is the default and probably most practical for normal purposes as it keeps

all �les together, hence easily found.

CHAPTER 3. INSTALLATION AND CONFIGURATION 14

FHS compliant

This method installs DOMjudge in directories according to the Filesystem Hierarchy Standard . It can

be enabled by passing the option �enable-fhs to configure and in this case the pre�x defaults to

/usr/local. Files will be placed e.g. in PREFIX/share/domjudge, PREFIX/bin, PREFIX/var/log,

PREFIX/etc/domjudge, while /tmp will be used for temporary �les. You may want to pass options

�sysconfdir=/etc and �localstatedir=/var to configure to disable the pre�x for these.

Note that the �with-baseurl con�gure option is not required but highly recommended, as it allows building

the submit client and team documentation with the correct URL preset. If needed, the setting can later be

updated in etc/domserver-static.php on the domserver, and in etc/submit-config.h in the source tree

for rebuilding the submit client.

After running the configure script, the system can be built and installed. Each of the domserver,

judgehost, docs parts can be built and installed separately, respectively by:

make domserver && sudo make install-domserver

make judgehost && sudo make install-judgehost

make docs && sudo make install-docs

Note that root privileges are required to set permissions and user and group ownership of password �les

and a few directories. If you run the installation targets as non-root, you will be warned that you have to

perform these steps manually. Although DOMjudge can be installed as root, one should not run DOMjudge

programs and daemons under the root user, but under a normal user: runguard is speci�cally designed to

be the only part invoked as root (through sudo) to make this unnecessary. Also, running as root will give

rise to problems, see A.4 (runguard: root privileges not dropped) in the common problems section.

For a list of basic make targets, run make in the source root directory without arguments.

3.4 Database installation

DOMjudge uses a MySQL or MariaDB database server for information storage. Where this document talks

about MySQL, it can be understood to also apply to MariaDB.

The database structure and privileges are included in MySQL dump �les in the sql subdirectory. The

default database name is domjudge. This can be changed manually in the etc/dbpasswords.secret �le:

the database name as speci�ed in this �le will be used when installing.

Installation of the database is done with bin/dj_setup_database. For this, you need an installed and

con�gured MySQL server and administrator access to it. Run

dj_setup_database genpass

dj_setup_database [-u <mysql admin user>] [-p <password>|-r] install

This �rst creates the DOMjudge database credentials �le etc/dbpasswords.secret (optionally change the

random generated password, although it is not needed for normal operation). Then it creates the database

and user and inserts some default/example data into the domjudge database. The option -r will prompt

for a password for mysql; when no user is speci�ed, the mysql client will try to read credentials from

$HOME/.my.cnf as usual. The command uninstall can be passed to dj_setup_database to remove the

DOMjudge database and users; this deletes all data!

The script also creates the initial "admin" user with password stored in

etc/initial_admin_password.secret.

The domjudge database contains a number of tables, some of which need to be manually �lled with data

before the contest can be run. See the 4.1 (database section of Contest setup) for details.

http://www.pathname.com/fhs/

CHAPTER 3. INSTALLATION AND CONFIGURATION 15

3.4.1 Setting up replication or backups

The MySQL server is the central place of information storage for DOMjudge. Think well about what to do

if the MySQL host fails or loses your data.

A very robust solution is to set up a replicating MySQL server on another host. This will be a hot copy of

all data up to the second, and can take over immediately in the event of failure. The MySQL manual has

more information about setting this up.

Alternatively, you can make regular backups of your data to another host, for example with mysqldump, or

using a RAID based system.

Replication can also be used to improve performance, by directing all select-queries to one or more replicated

slave servers, while updates will still be done to the master. This is not supported out of the box, and will

require making changes to the DOMjudge source.

3.4.2 Storage of submissions

The database is the authoritative version for submission source �les; �le system storage is available as an

easy way to access the source �les and as backup, but only when the web server has write permissions to

<domjudge_submitdir>. File system storage is ignored if these permissions are not set. The programs

bin/save_sources2file and bin/restore_sources2db are available to store and recover the submission

table in the database to/from these �les.

3.5 Web server con�guration

For the web interface, you need to have a web server (e.g. nginx or Apache) installed on the domserver and

made sure that PHP correctly works with it. Refer to the documentation of your web server and PHP for

details.

To con�gure the Apache web server for DOMjudge, use the Apache con�guration snippet from

etc/apache.conf. It contains examples for con�guring the DOMjudge pages with an alias directive, or

as a virtualhost, optionally with SSL; it also contains PHP and security settings. Reload the web server for

changes to take e�ect.

ln -s <DOMSERVER_INSTALL_PATH>/etc/apache.conf /etc/apache2/conf-available/domjudge.conf

a2enmod rewrite

a2enconf domjudge

Edit the file /etc/apache2/conf-available/domjudge.conf to your needs

service apache2 reload

An nginx webserver con�guration snippet is also provided in etc/nginx-conf. Furthermore the �le

etc/domjudge-fpm.conf contains the PHP FPM con�guration you can use. You still need htpasswd from

apache2-utils though. To use this con�guration �le, perform the following steps

ln -s <DOMSERVER_INSTALL_PATH>/etc/nginx-conf /etc/nginx/sites-enabled/domjudge

ln -s <DOMSERVER_INSTALL_PATH>/etc/domjudge-fpm.conf /etc/php/7.0/fpm/pool.d/domjudge.conf

Edit the files /etc/nginx/sites-enabled/domjudge and

/etc/php/7.0/fpm/pool.d/domjudge.conf to your needs

service php7.0-fpm reload

service nginx reload

CHAPTER 3. INSTALLATION AND CONFIGURATION 16

The judgehosts connect to DOMjudge via the DOMjudge API so need to be able to access at least this part

of the web interface.

3.6 Fine tuning server settings

For Apache, there are countless documents on how to maximize performance. Of particular importance is

to ensure that the MaxClients setting is high enough to receive the number of parallel requests you expect,

but not higher than your amount of RAM allows. Furthermore, we recommend to turn KeepAlive o�, or

at least make sure that KeepAliveTimeout is set to only a few seconds. Otherwise, a large number of page

view requests from teams and public can easily exhaust the Apache workers, resulting in an unresponsive

website, which will also a�ect the judgedaemons.

As for PHP, the use of an opcode cache like the Alternative PHP Cache (Debian package: php-apc) is

bene�cial for performance. For uploading large testcases, see the A.3 (section about memory limits).

It may be desirable or even necessary to �ne tune some MySQL default settings:

• max_connections: The default 100 is too low, because of the connection caching by Apache threads.

1000 is more appropriate.

• max_allowed_packet: The default of 16MB might be too low when using large testcases. This should

be changed both in the MySQL server and client con�guration and be set to about twice the maximum

testcase size.

• innodb_log_file_size: The default of 48MB might be too low on MySQL servers with version 5.6.20

or newer due to changes to the redo log. You should set it 10 times higher than the maximum testcase

size.

• Root password: MySQL does not have a password for the root user by default. It's very desirable to

set one.

• When maximising performance is required, you can consider to use the Memory table storage engine

for the scorecache and rankcache tables. They will be lost in case of a full crash, but can be recalculated

from the jury interface.

3.7 Installation of a judgehost

Some extra steps have to be taken to completely install and con�gure a judgehost.

3.7.1 Unprivileged user and group

For running solution programs under a non-privileged user, a user and group have to be added to the

system(s) that act as judgehost. This user does not need a home-directory or password, so the following

command would su�ce to add a user and group `domjudge-run' with minimal privileges.

On Debian and Redhat based Linux distributions use:

useradd -d /nonexistent -U -M -s /bin/false domjudge-run

For other systems check the speci�cs of your useradd command. This user must also be con�gured as the

user under which programs run via configure �enable-runuser=USER; the default is domjudge-run. By

default the group is set to the same, this can be modi�ed with the option �enable-rungroup=GROUP

CHAPTER 3. INSTALLATION AND CONFIGURATION 17

3.7.2 Sudo permissions

Runguard needs to be able to become root for certain operations like changing to the runuser and performing

a chroot. Also, the default chroot-startstop.sh script uses sudo to gain privileges for certain operations.

There's a pregenerated /etc/sudoers.d/ snippet in etc/sudoers-domjudge that contains all required rules.

You can put the lines in the snippet at the end of /etc/sudoers, or, for modern sudo versions, place the

�le in /etc/sudoers.d/. If you change the user you run the judgedaemon as, or the installation paths, be

sure to update the sudoers rules accordingly.

3.7.3 Creating a chroot environment

The judgedaemon executes submissions inside a chroot environment for security reasons. By de-

fault it mounts parts of a prebuilt chroot tree read-only during this judging process (using the script

lib/judge/chroot-startstop.sh). This is needed to support extra languages that require access to inter-

preters or support libraries at runtime, for example Java, C#, and any interpreted languages like Python,

Perl, Shell script, etc.

This chroot tree can be built using the script bin/dj_make_chroot. On Debian and Ubuntu the same

distribution and version as the host system are used, on other Linux distributions the latest stable Debian

release will be used to build the chroot. Any extra packages to support languages can be passed with the

option -i or be added to the INSTALLDEBS variable in the script. The script bin/dj_run_chroot runs an

interactive shell or a command inside the chroot. This can be used for example to install new or upgrade

existing packages inside the chroot. Run these scripts with option -h for more information.

Finally, if necessary edit the script lib/judge/chroot-startstop.sh and adapt it to work with your local

system. In case you changed the default pre-built chroot directory, make sure to also update the sudo rules

and the CHROOTORIGINAL variable in chroot-startstop.sh.

When using the default chroot-start-stop.sh script, a static POSIX shell has to be available for copying

it into the chroot environment. For Linux i386, a static Dash shell is included, which works out of the box,

also for the Linux Intel/AMD 64 architecture. For other architectures or operating systems, a shell has to

be added manually. Then simply point the lib/sh-static symlink to this �le.

3.7.4 Linux Control Groups

DOMjudge uses Linux Control Groups or cgroups for process isolation in the judgedaemon. Linux cgroups

give more accurate measurement of actually allocated memory than traditional resource limits (which is

helpful with interpreters like Java that reserve but not actually use lots of memory). Also, cgroups are

used to restrict network access so no separate measures are necessary, and they allow running multiple

judgedaemons on a multi-core machine by using CPU binding.

The judgedaemon needs to run a recent Linux kernel (at least 3.2.0). The following steps con�gure cgroups

on Debian wheezy. Instructions for other distributions may be di�erent (send us your feedback!). Edit

grub con�g to add cgroup memory and swap accounting to the boot options. Edit /etc/default/grub and

change the default commandline to

GRUB_CMDLINE_LINUX_DEFAULT="quiet cgroup_enable=memory swapaccount=1"

Then run update-grub and reboot. After rebooting check that /proc/cmdline actually contains

the added kernel options. On VM hosting providers such as Google Cloud or DigitalOcean,

GRUB_CMDLINE_LINUX_DEFAULT may be overwritten by other �les in /etc/default/grub.d/.

CHAPTER 3. INSTALLATION AND CONFIGURATION 18

You have now con�gured the system to use cgroups, but you need to create the actual cgroups that DOMjudge

will use. For that, you can use the script under misc-tools/create_cgroups. Edit the script to match your

situation �rst. This script needs to be re-run after each boot (it has already been added to the judgedaemon

init script).

3.7.5 REST API credentials

The judgehost connects to the domserver via a REST API. You need to create an account for the judgedae-

mons to use (this may be a shared account between all judgedaemons) with a di�cult, random password and

the 'judgehost' role. On each judgehost, copy from the domserver (or create) a �le etc/restapi.secret

containing the id, URL, username and password whitespace-separated on one line, for example:

default http://example.edu/domjudge/api/ judgehosts MzfJYWF5agSlUfmiGEy5mgkfqU

Note that the password must be identical to that of the judgehost user in the admin web interface. Multiple

lines may be speci�ed to allow a judgedaemon to work for multiple domservers. The id is used to di�erentiate

between multiple domservers, and should be unique within the restapi.secret �le.

3.7.6 Starting the judgedaemon

Finally start the judgedaemon (optionally binding it to CPU core X):

bin/judgedaemon [-n X]

If using the -n X option, then an extra user domjudge-run-X must also be created. Additionally, you could

add a kernel parameter isolcpus=X to make the Linux kernel not schedule any processes on CPU X, except

those explicitly bound to it. This might improve runtime consistency under some circumstances; however,

in a test running a single judgedaemon on 6 CPU core machines, we did not see any signi�cant improvement

of runtime or decrease in variations.

Upon its �rst connection to the domserver API, the judgehost will be auto-registered and will be by default

enabled. If you wish to add a new judgehost but have it initially disabled, you can add it manually through

the DOMjudge web interface and set it to disabled before starting the judgedaemon.

3.8 Building and installing the submit client

DOMjudge supports two submission methods: via the command line submit program and via the web

interface. From experience, both methods have users that prefer the one above the other.

The command line submit client sends submissions using the API interface internally. This requires the

libcURL and libjsonCPP library development �les at compile time. The submit client can be statically

linked using the �enable-static-linking con�gure option to avoid a runtime dependency.

The submit client can be built with make submitclient. There is no make target to install the submit

client, as its location will very much depend on the environment. You might e.g. want to copy it to all team

computers or make it available on a network �lesystem. Note that if the team computers run a di�erent

(version of the) operating system than the jury systems, then you need to build the submit client for that

OS.

The submit client needs to know the URL of the domserver. This can be passed as a command line option

or environment variable. The latter option makes for easier usage. A sample script submit_wrapper.sh is

included, which sets this variable. See that script for more details on how to set this up.

CHAPTER 3. INSTALLATION AND CONFIGURATION 19

The submit client authenticates to the DOMjudge API via either the con�gured authentication scheme, or

can use the DOMjudge internal username and password combination for a given user account regardless of

authentication scheme. For example, when the IPADDRESS scheme is used, no additional con�guration is

required because submissions will come from the correct IP address of the team. When another scheme is

used, it may be necessary to place username and password combinations in the team's account so the submit

client can use those. In this case these are always the DOMjudge internal password, so not e.g. LDAP

passwords when using that scheme. The credentials are placed in the �le �/.netrc, with example content:

machine domserver.example.com login user0123 password Fba^2bHzz

See the netrc(4) manual page for more details. You may want to distribute those .netrc �les in advance to

the team accounts. Make sure they are only readable for the user itself.

3.8.1 The submit client under Windows/Cygwin

Note: this feature is not well supported anymore; we recommend using the web interface for submitting in

Windows.

The submit client can also be built under Windows when the Cygwin environment is installed. First install

Cygwin <https://cygwin.com/install.html> , and include GCC, curl-devel and maybe some more pack-

ages. When Cygwin is correctly installed with all necessary development tools, the submit binary can be

created by running configure followed by make submit.exe in the submit directory.

3.9 Con�guration

Con�guration of the judge system is mostly done by editing the con�guration variables on the page

Configuration settings available in the administrator interface, and changes take e�ect immediately.

The administrator interface can be reached on http(s)://yourhost.example.edu/domjudge/jury/ and

the default username is admin with initial password stored in etc/initial_admin_password.secret.

Some settings that are tightly coupled to the �lesystem can be con�gured in the �les in etc:

domserver-config.php, judgehost-config.php, common-config.php for the con�guration options of

the domserver, judgehost and shared con�guration options respectively. Descriptions of settings are in-

cluded in these �les. The judgedaemon must be restarted for changes to take e�ect, while these are directly

picked up by the webinterfaces.

Besides these settings, there are a few other places where changes can be made to the system, see 3.15 (other

con�gurable scripts).

3.10 Authentication Methods

Out of the box users are able to authenticate using basic username and password. There is also a con�guration

option to allow teams to self-register with the system.

Two other authentication methods are available:

• IP Address - authenticates users based on the IP address they are accessing the system from

• X-Headers - authenticates users based on some http X-HEADER's

https://cygwin.com/install.html

CHAPTER 3. INSTALLATION AND CONFIGURATION 20

3.10.1 IP Address

To enable the IP Address authentication method, you will need to edit the con�guration option auth_methods

to include ipaddress.

Once this is done, when a user �rst logs in their IP Address will be associated with their account, and

subsequent logins will allow them to log in without authenticating.

If desired, you can edit the IP Address associated with an account from the Users page in the jury interface.

3.10.2 X-Headers

To enable the IP Address authentication method, you will need to edit the con�guration option auth_methods

to include xheaders.

To use this method, the following headers need to be sent to the /login URL. This can be done using the

squid proxy for example, to prevent teams from needing to know their own log in information but in an

environment where IP address based auth is not feasible(multi site over the internet contest).

• X-DOMjudge-Login - Contains the username

• X-DOMjudge-Pass - Contains the user's password, base64 encoded

Squid con�guration for this might look like:

acl autologin url_regex ^http://localhost/domjudge/login

request_header_add X-DOMjudge-Login "$USERNAME" autologin

request_header_add X-DOMjudge-Pass "$BASE64_PASSWORD" autologin

3.11 Executables

DOMjudge supports executable archives (uploaded and stored in ZIP format) for con�guration of languages,

special run and compare programs. The archive must contain an executable �le named build or run. When

deploying a new (or changed) executable to a judgehost build is executed once if present. Afterwards an

executable �le run must exist (it may have existed before), that is called to execute the compile, compare,

or run script. The speci�c formats are detailed below.

Executables may be changed via the web interface in an online editor or by uploading a replacement zip �le.

Changes apply immediately to all further uses of that executable.

3.12 Con�guration of languages

Compilers can be con�gured by creating or selecting/editing an executable in the web interface. When

compiling a set of source �les, the run executable is invoked with the following arguments: destination �le

name, memory limit (in KB), main (�rst) source �le, other source �les. For more information, see for example

the executables c or java_javac_detect in the web interface. Note that compile scripts are included for

most common languages already.

Interpreted languages and non-statically linked binaries (for example, Oracle Java) can in principle also be

used, but require that all runtime dependencies are added to the chroot environment. See section 3.7.3

(creating a chroot environment).

CHAPTER 3. INSTALLATION AND CONFIGURATION 21

Interpreted languages do not generate an executable and in principle do not need a compilation step. How-

ever, to be able to use interpreted languages (also Oracle's Java), during the compilation step a script must

be generated that will function as the executable: the script must run the interpreter on the source. See for

example pl and java_javac_detect in the list of executables.

3.13 Con�guration of special run and compare programs

To allow for problems that do not �t within the standard scheme of �xed input and/or output, DOMjudge

has the possibility to change the way submissions are run and checked for correctness.

The back end script testcase_run.sh that handles the running and checking of submissions, calls separate

programs for running submissions and comparison of the results. These can be specialised and adapted to

the requirements per problem. For this, one has to create executable archives as described above. Then the

executable must be selected in the special_run and/or special_compare �elds of the problem (an empty

value means that the default run and compare scripts should be used; the defaults can be set in the global

con�guration settings). When creating custom run and compare programs, we recommend re-using wrapper

scripts that handle the tedious, standard part. See the bool�nd example for details.

3.13.1 Compare programs

Compare scripts/programs should follow the Kattis/problemarchive output validator format . DOMjudge

uses the default output validator speci�ed there as its default, which can be found at

<https://github.com/Kattis/problemtools/blob/master/support/default_validator/> .

Note that DOMjudge only supports a subset of the functionality described there. In particular, the calling

syntax is

/path/to/compare_script/run <testdata.in> <testdata.ans> <feedbackdir> <compare_args> < <program.out>

where testdata.in testdata.ans are the jury reference input and output �les, feedbackdir the directory

containing e.g. the judging response �le judgemessage.txt to be written to (the only other permitted

�les there are teammessage.txt score.txt judgeerror.txt diffposition.txt), compare_args a list of

arguments that can set when con�guring a contest problem, and program.out the team's output. The

validator program should not make any assumptions on its working directory.

For more details on writing and modifying a compare (or validator) scripts, see the boolfind_cmp example

and the comments at the top of the �le testcase_run.sh.

3.13.2 Run programs

Special run programs can be used, for example, to create an interactive problem, where the contestants'

program exchanges information with a jury program and receives data depending on its own output. The

problem boolfind is included as an example interactive problem, see docs/examples/boolfind.pdf for the

description.

Usage is similar to compare programs: you can either create a program run yourself, or use the provided

wrapper script, which handles bi-directional communication between a jury program and the contestants'

program on stdin/stdout (see the run �le in the boolfind_run executable).

For the �rst case, the calling syntax that the program must accept is equal to the calling syntax of

run_wrapper, which is documented in that �le. When using run_wrapper, you should copy it to run

http://www.problemarchive.org/wiki/index.php/Output_validator
http://www.problemarchive.org/wiki/index.php/Problem_Format#Output_Validators
https://github.com/Kattis/problemtools/blob/master/support/default_validator/

CHAPTER 3. INSTALLATION AND CONFIGURATION 22

in your executable archive. The jury must write a program named exactly runjury, accepting the calling

syntax

runjury <testdata.in> <program.out>

where the arguments are �les to read input testdata from and write program output to, respectively. This

program will communicate via stdin/stdout with the contestants' program. A special compare program

must probably also be created, so the exact data written to <program.out> is not important, as long as

the correctness of the contestants' program can be deduced from the contents by the compare program.

3.14 Alerting system

DOMjudge includes an alerting system. This allows the administrator to receive alerts when important

system events happen, e.g. an error occurs, or a submission or judging is made.

These alerts are passed to a plugin script alert which can easily be adapted to �t your needs. The default

script emits di�erent beeping sounds for the di�erent messages when the beep program is available, but it

could for example also be modi�ed to send a mail on speci�c issues, connect to monitoring software like

Nagios, etc. For more details, see the script lib/alert.

3.15 Other con�gurable scripts

There are a few more places where some con�guration of the system can be made. These are sometimes

needed in non-standard environments.

• In bin/dj_make_chroot on a judgehost some changes to variables can be made, most notably

DEBMIRROR to select a Debian mirror site near you.

• The script lib/judge/chroot-startstop.sh can be modi�ed to suit your local environment. See

comments in that �le for more information.

3.16 Logging & debugging

All DOMjudge daemons and web interface scripts support logging and debugging in a uniform manner via

functions in lib.error.*. There are three ways in which information is logged:

• Directly to stderr for daemons or to the web page for web interface scripts (the latter only on serious

issues).

• To a log �le set by the variable LOGFILE, which is set in each program. Unsetting this variable disables

this method.

• To syslog. This can be con�gured via the SYSLOG con�guration variable in etc/common-config.php.

This option gives the �exibility of syslog, such as remote logging. See the syslog(daemon) documenta-

tion for more information. Unsetting this variable disables this method.

Each script also de�nes a default threshold level for messages to be logged to stderr (VERBOSE: defaults

to LOG_INFO in daemons and LOG_ERR in the web interface) and for log �le/syslog (LOGLEVEL: defaults to

LOG_DEBUG).

CHAPTER 3. INSTALLATION AND CONFIGURATION 23

In case of problems, it is advisable to check the logs for clues. Extra debugging information can be obtained

by setting the con�g option DEBUG to a bitwise-or of the available DEBUG_* �ags in etc/common-config.php,

to e.g. generate extra SQL query and timing information in the web interface.

3.17 (Re)generating documentation and the team manual

There are three sets of documentation available under the doc directory in DOMjudge:

the admin-manual

for administrators of the system (this document),

the judge-manual

for judges, describing the jury web interface and giving some general information about this system,

the team-manual

for teams, explaining how to use the system and what restrictions there are.

The team manual is only available in PDF format and must be built from the LaTeX sources in doc/team after

con�guration of the system. A prebuilt team manual is included, but note that it contains default/example

values for site-speci�c con�guration settings such as the team web interface URL and judging settings such

as the memory limit. We strongly recommend rebuilding the team manual to include site-speci�c settings

and also to revise it to re�ect your contest speci�c environment and rules.

Besides a standard LaTeX installation, the team manual requires the svn and expdlist packages. These are

available in TeX Live in the texlive-latex-extra package in any modern Linux distribution. Alternatively,

you can download and install them manually from their respective subdirectories in <http://mirror.ctan.

org/macros/latex/contrib> .

When the docs part of DOMjudge is installed and site-speci�c con�guration set, the team manual can be

generated with the command genteammanual found under docs/team. The PDF document will be placed in

the current directory or a directory given as argument. The following should do it on a Debian-like system:

sudo apt install make texlive-latex-extra texlive-latex-recommended texlive-lang-european

cd <INSTALL_PATH>/docs/team

./genteammanual [targetdir]

The administrator's and judge's manuals are available in PDF and HTML format and prebuilt from SGML

sources. Rebuilding these is not normally necessary. To rebuild them on a Debian-like system, the following

commands should do it:

sudo apt install linuxdoc-tools make zip ghostscript groff texlive-latex-recommended

make -C doc/admin docs

make -C doc/judge docs

3.18 Optional features

3.18.1 Multiple judgedaemons per machine

You can run multiple judgedaemons on one multi-cpu or multi-core machine, dedicating one cpu core to each

judgedaemon.

http://mirror.ctan.org/macros/latex/contrib
http://mirror.ctan.org/macros/latex/contrib

CHAPTER 3. INSTALLATION AND CONFIGURATION 24

To that end, add extra unprivileged users to the system, i.e. add users domjudge-run-<X> (where X runs

through 0,1,2,3) with useradd as described in section 3.7 (installation of a judgehost). Finally, start each

of the judgedaemons with

judgedaemon -n <X>

to bind it to core X.

3.18.2 Encrypted communications (HTTPS)

DOMjudge can be con�gured to run on HTTPS, so teams and judgedaemons communicate with the dom-

server securely over encrypted SSL/TLS connections. Setting up SSL for Apache is documented in the

Apache manual and in many tutorials around the web.

The judgedaemons must recognise the CA you're using, otherwise they will refuse to connect over HTTPS. If

your judgedaemon gives an error message about an untrusted certi�cate, put your domserver's certi�cate in

/etc/ssl/certs/yourname.crt of each judgehost (and on the team machines when using the commandline

submit client) and run:

sudo c_rehash

When loading teams from the ICPC registration system through the import feature in DOMjudge, the

certi�cate from icpc.baylor.edu must similarly be accepted by your local installation or if not, added via the

procedure above.

3.18.3 NTP time synchronisation

We advise to install an NTP-daemon (Network Time Protocol) to make sure the time between domserver,

judgehosts, and jury and team computers is in sync.

3.18.4 Printing

It is recommended to con�gure the local desktop printing of team workstations where ever possible: this has

the most simple interface and allows teams to print from within their editor.

If this is not feasible, DOMjudge includes support for printing via the DOMjudge web interface: the DOM-

judge server then needs to be able to deliver the uploaded �les to the printer. It can be enabled via the

print_command con�guration option in the administrator interface. Here you can enter a command that will

be run to print the �les. The command you enter can have the following placeholders:

• [file]: the location on disk of the �le to print.

• [original]: the original name of the �le.

• [language]: the ID of the language of the �le. Useful for syntax highlighting.

• [username]: the username of the user who is printing.

• [teamname]: the teamname of the user who is printing.

• [teamid]: the team ID of the user who is printing.

• [location]: the location of the user's team.

http://httpd.apache.org/docs/2.4/ssl/

CHAPTER 3. INSTALLATION AND CONFIGURATION 25

Note that [language], [teamname], [teamid] and [location] can be empty. Placeholders will be shell-

escaped before passing them to the command. The standard output of the command will be shown in the

web interface. If you also want to show standard error, add 2>&1 to the command.

For example, to send the �rst 10 pages of the �le to the default printer using enscript and add the username

in the page header, you can use this command:

enscript -b [username] -a 0-10 -f Courier9 [file] 2>&1

3.18.5 Judging consistency

The following issues can be considered to improve consistency in judging.

• Disable CPU frequency scaling and Intel "Turbo Boost" to prevent �uctuations in CPU power.

• Disable address-space randomization to make programs with memory addressing bugs give more re-

producible results. To do that, you can add the following line to /etc/sysctl.conf:

kernel.randomize_va_space=0

This will restore these settings permanently across reboots. Then run the following command:

sudo sysctl -p

to directly activate these settings.

3.19 Upgrading

There is some support to upgrade DOMjudge to newer versions. Note that this functionality is not extensively

tested, so when you plan to upgrade, you are strongly advised to backup the DOMjudge database and other

data before continuing . We also advise to check the ChangeLog �le for important changes.

Upgrading the �lesystem installation is probably best done by installing the new version of DOMjudge in a

separate place and transferring the con�guration settings from the old version.

Since DOMjudge used Doctrine migrations, it is possible to upgrade from one version to another. Do note

that this is only supported from DOMjudge 7.0 onwards. This means that if you run a DOMjudge version

before 7.0, you �rst need to upgrade to 7.0 before upgrading to a newer version.

If you have any active contests, it may be advisable to run "Refresh scoreboard cache" from the DOMjudge

web interface after the upgrade.

4 Setting up a contest

After installation is successful, you want to run your contest! Con�guring DOMjudge to run a contest (or a

number of them, in sequence) involves the following steps:

• Con�gure the contest data;

• Set up authentication for teams;

• Supply in- and output testdata;

• Check that everything works.

4.1 Con�gure the contest data

DOMjudge stores and retrieves most of its data from the MySQL database. Some information must be �lled

in beforehand, other tables will be populated by DOMjudge.

You can use the jury web interface to add, edit and delete most types of data described below. It's advised to

keep a version of phpMyAdmin handy in case of emergencies, or for general database operations like import

and export.

This section describes the meaning of each table and what you need to put into it. Tables marked with an

`x' are the ones you have to con�gure with contest data before running a contest (via the jury web interface

or e.g. with phpMyAdmin), the other tables are used automatically by the software:

26

CHAPTER 4. SETTING UP A CONTEST 27

auditlog Log of every state-changing event.

balloon Balloons to be handed out.

clari�cation Clari�cation requests/replies are stored here.

x con�guration Runtime con�guration settings.

x contest Contest de�nitions with start/end time.

x contestproblem Coupling of problems to contests and data speci�c to it.

x contestteam Coupling of teams to contests.

event Log of events during contests.

x executable Executable compile/run/compare scripts.

internal_error Stores errors that occurred on judgehosts including logs.

judgehost Computers (hostnames) that function as judgehosts.

x judgehost_restriction Optional restriction sets on submissions taken by judgehosts.

judging Judgings of submissions.

judging_run Result of one testcase within a judging.

x language De�nition of allowed submission languages.

x problem De�nition of problems (name, timelimit, etc.).

rankcache Cache of team ranking data for public/teams and for the jury.

rejudging Metadata for batched rejudging.

role Possible user roles.

scorecache Cache of the scoreboards for public/teams and for the jury.

submission Submission metadata of solutions to problems.

submission_�le Submitted code �les.

x team De�nition of teams.

x team_a�liation De�nition of institutions a team can be a�liated with.

x team_category Di�erent category groups teams can be put in.

team_unread Records which clari�cations are read by which team.

x testcase De�nition of testdata for each problem.

x user Users that will able to access the system.

x userrole Mapping of users to their roles.

Now follows a longer description (including �elds) per table that has to be �lled manually. As a general

remark: almost all tables have an identi�er �eld. Most of these are numeric and automatically increasing;

these do not need to be speci�ed. The tables executable and language have text strings as identi�er �elds.

These need to be manually speci�ed and only alpha-numeric, dash and underscore characters are valid, i.e.

a-z, A-Z, 0-9, -, _.

con�guration

This table contains con�guration settings. These entries are simply stored as name, value pairs, where

the values are JSON encoded, type contains the allowed data type, and description documents the

con�guration setting.

contest

The contests that the software will run. E.g. a test session and the live contest.

cid is the reference ID and contestname is a descriptive name used in the interface, while shortname

is the publicly visible identi�er.

activatetime, starttime and endtime are required �elds and specify when this contest is active

and open for submissions. Optional freezetime and unfreezetime control scoreboard freezing and

deactivatetime when the contest is not visible anymore. For a detailed treating of these, see section

4.2 (Contest milestones). All contest times can be speci�ed relative to starttime, except of course

starttime itself. The input given in the jury interface (either relative or absolute) is stored in the

CHAPTER 4. SETTING UP A CONTEST 28

*time_string �elds, while a calculated absolute version is stored in the �elds without the _string

su�x.

The public �eld can be used to limit which contests are displayed as public scoreboards (as opposed

to privately to a selected set of teams), while enabled can be used to (temporarily) disable a contest

altogether.

contestproblem

This table couples problems to contests: cid and probid describe the pairing.

Furthermore, it stores problem data that is speci�c for the included contest: shortname is a contest-

unique identi�er string for the problem, points defaults to 1 and can be set to assign non-even scoring;

allow_submit determines whether teams can submit solutions for this problem. Non-submittable

problems are also not displayed on the scoreboard. This can be used to de�ne spare problems, which

can then be added to the contest quickly; allow_judge determines whether judgehosts will judge

submissions for this problem. See also the explanation for language.

The color tag can be �lled with a CSS colour speci�cation to associate with this problem; see also

section 6.2.1 (Scoreboard: colours).

contestteam

This table couples teams to contests. Teams can only submit solutions to problems in contests that

are public or which they are part of.

executable

This table stores zip-bundles of executable scripts that can be used as compile, run, and compare

scripts.

judgehost_restriction

This table encodes restriction sets for selecting which submissions are sent to a judgehost. The re-

strictions are JSON encoded in the restrictions column, and can be set in the admin web interface

to restrict on speci�c contests, problems, languages, and to never rejudge on the same judgehost. A

restriction set can be assigned to judgehost(s) on the edit page of the judgehosts overview.

language

Programming languages in which to accept and judge submissions. langid is a string of maximum

length 8, which references the language. name is the displayed name of the language; extensions is

a JSON encoded list of recognized �lename extensions; allow_submit determines whether teams can

submit using this language; allow_judge determines whether judgehosts will judge submissions for

this problem. This can for example be set to no to temporarily hold judging when a problem occurs

with the judging of a speci�c language; after resolution of the problem this can be set to yes again.

time_factor is the relative factor by which the timelimit is multiplied for solutions in this language;

compile_script refers to a compile executable script that is used for this language.

problem

This table contains the problem de�nitions. probid is the reference ID, cid is the contest ID this

problem is (only) de�ned for: a problem cannot be used in multiple contests. name is the full name

(description) of the problem.

allow_submit determines whether teams can submit solutions for this problem. Non-submittable

problems are also not displayed on the scoreboard. This can be used to de�ne spare problems, which

can then be added to the contest quickly; allow_judge determines whether judgehosts will judge

submissions for this problem. See also the explanation for language.

CHAPTER 4. SETTING UP A CONTEST 29

timelimit is the timelimit in seconds within which solutions for this problem have to run (taking into

account time_factor per language). See also A.6 (enforcement of time limits) for more details.

memlimit is the memory limit in kB allotted for this problem. If empty then the global con�guration

setting memory_limit is used. Equivalently for outputlimit.

special_run if not empty de�nes a custom run program run_<special_run> to run compiled sub-

missions for this problem and special_compare if not empty de�nes a custom compare program

compare_<special_compare> to compare output for this problem.

The color tag can be �lled with a CSS colour speci�cation to associate with this problem; see also

section 6.2.1 (Scoreboard: colours).

In problemtext a PDF, HTML or plain text document can be placed which allows team, public and

jury to download the problem statement. Note that no additional �ltering takes place, so HTML (and

PDF to some extent) should be from a trusted source to prevent cross site scripting or other attacks.

The �le type is stored in problemtext_type.

team

Table of teams: teamid is (internal) ID of the team, while externalid can be used to store an ID for

im/exporting to other systems. name the displayed name of the team, categoryid is the ID of the

category the team is in; affilid is the a�liation ID of the team.

When enabled is set to 0, the team immediately disappears from the scoreboards and cannot use the

team web interface anymore, even when already logged in. One use case could be to disqualify a team

on the spot.

members are the names of the team members, separated by newlines and room is the location or room

of the team, both for display only; comments can be �lled with arbitrary useful information and is only

visible to the jury.

The penalty �eld can be used to give this team a (positive or negative) number of penalty minutes to

correct for exceptional circumstances.

team_a�liation

affilid is the reference ID and name the name of the institution. country should be the 3 character

ISO 3166-1 alpha-3 abbreviation of the country and comments is a free form �eld that is displayed in

the jury interface.

A country �ag can be displayed on the scoreboard. For this to work, the country �eld must match a

(�ag) picture in webapp/public/images/countries/<country>.png. All country �ags are present

there, named with their 3-character ISO codes. See also webapp/public/images/countries/README.

team_category

categoryid is the reference ID and name is a string: the name of the category. sortorder is the order

at which this group must be sorted in the scoreboard, where a higher number sorts lower and equal

sort depending on score.

The color is again a CSS colour speci�cation used to discern di�erent categories easily. See also section

6.2.1 (Scoreboard: colours).

The visible �ag determines whether teams in this category are displayed on the public/team score-

board. This feature can be used to remove teams from the public scoreboard by assigning them to a

separate, invisible category.

testcase

The testcase table contains testdata for each problem; testcaseid is a unique identi�er, input and

output contain the testcase input/output and image an optional graphical representation of the test-

case for the jury. The �elds md5sum_input, md5sum_output, and md5sum_image contain their respective

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3#Officially_assigned_code_elements

CHAPTER 4. SETTING UP A CONTEST 30

md5 hashes to check for up-to-date-ness of cached versions by the judgehosts and image_thumb and

image_type a thumbnail version and mimetype string for the image. The �eld probid is the corre-

sponding problem and rank determines the order of the testcases for one problem. description is an

optional description for this testcase. See also 4.3 (providing testdata).

user

This table has the users that the system knows about with their login credentials. Each user may have

one or more roles, like being part of a team, being a jury member or administrator. There are also

functional accounts, like for judgedaemons.

4.2 Contest milestones

The contest table speci�es timestamps for each contest that mark speci�c milestones in the course of the

contest.

The triplet activatetime, starttime and endtime de�ne when the contest runs and are required �elds (acti-

vatetime and starttime may be equal).

activatetime is the moment when a contest �rst becomes visible to the public and teams . Nothing can be

submitted yet and the problem set is not revealed. Clari�cations can be viewed and sent.

At starttime, the scoreboard is displayed and submissions are accepted. At endtime the contest stops. New

incoming submissions will still be processed and judged, but the result will not be shown anymore to teams;

they instead receive the verdict`too-late'. Unjudged submissions received before endtime will still be judged

normally.

freezetime and unfreezetime control scoreboard freezing. freezetime is the time after which the public and

team scoreboard are not updated anymore (frozen). This is meant to make the last stages of the contest

more thrilling, because no-one knows who has won. Leaving them empty disables this feature. When using

this feature, unfreezetime can be set to automatically `unfreeze' the scoreboard at that time. For a more

elaborate description, see also section 6.2.3 (Scoreboard: freezing and defrosting).

The scoreboard, results and clari�cations will remain to be displayed to team and public after a contest,

until the deactivatetime.

All events happen at the �rst moment of the de�ned time. That is: for a contest with starttime "12:00:00"

and endtime "17:00:00", the �rst submission will be accepted at 12:00:00 and the last one at 16:59:59.

The following ordering must always hold: activatetime <= starttime < (freezetime <=) endtime (<=

unfreezetime) (<= deactivatime).

4.3 Providing testdata

Testdata is used to judge the problems: when a submission run is given the input testdata, the resulting

output is compared to the reference output data using a compare script . The default compare script simply

checks if the outputs are equal up to whitespace di�erences, but more elaborate comparisons can be done,

see e.g. the float and boolfind_cmp scripts.

The database has a separate table named testcase, which can be manipulated from the web interface. Under

a problem, click on the testcase link. There the �les can be uploaded. The judgehosts cache a copy based

on MD5 sum, so if you need to make changes later, re-upload the data in the web interface and it will

automatically be picked up.

CHAPTER 4. SETTING UP A CONTEST 31

Testdata can also be imported into the system from a problem zip �le, following the Kattis problem package

format .

4.4 Start the daemons

Once everything is con�gured, you can start the daemons. They all run as a normal user on the system.

The needed root privileges are gained through sudo only when necessary.

• One or more judgedaemons: one on each judgehost (or optionally multiple per host; then the -n X

option should be used to bind a judgedaemon to CPU X to prevent CPU resource con�icts).

• Optionally the balloon noti�cation daemon (as an alternative to the web interface).

4.5 Check that everything works

If the daemons have started without any problems, you've come a long way! Now to check that you're ready

for a contest.

First, go to the jury interface: http(s)://yourhost.example.edu/domjudge/jury. Look under all the

menu items to see whether the displayed data looks sane. Use the con�g-checker under `Admin Functions'

for some sanity checks on your con�guration.

Go to a team workstation and see if you can access the team page and if you can submit solutions.

Next, it is time to submit some test solutions. If you have the default Hello World problem enabled, you can

submit some of the example sources from under the doc/examples directory. They should give `CORRECT'.

You can also try some (or all) of the sources under tests. Use make check to submit a variety of tests; this

should work when the submit client is available and the default example problems are in the active contest.

There's also make stress-test, but be warned that these tests might crash a judgedaemon. The results

can be checked in the web interface; each source �le speci�es the expected outcome with some explanations.

For convenience, there is a link judging veri�er in the admin web interface; this will automatically check

whether submitted sources from the tests directory were judged as expected. Note that a few sources have

multiple possible outcomes: these must be veri�ed manually.

When all this worked, you're quite ready for a contest. Or at least, the practice session of a contest.

4.6 Testing jury solutions

Before running a real contest, you and/or the jury will want to test the jury's reference solutions on the

system.

The simplest way to do this is to include the jury solutions in a problem zip �le and upload this. You can

also upload a zip �le containing just solutions to an existing problem. Note that the zip archive has to adhere

to the Kattis problem package format . For this to work, the jury/admin who uploads the problem has to

have an associated team to which the solutions will be assigned. The solutions will automatically be judged

if the contest is active (but it need not have started yet). You can verify whether the submissions gave the

expected answer from the link on the jury/admin index page.

http://www.problemarchive.org/wiki/index.php/Problem_Format
http://www.problemarchive.org/wiki/index.php/Problem_Format
http://www.problemarchive.org/wiki/index.php/Problem_Format

5 Team Workstations

Here's a quick checklist for con�guring the team workstations. Of course, when hosting many teams, it

makes sense to generate a precon�gured account that has these features and can be distributed over the

workstations.

1. The central tool teams use to interact with DOMjudge is the web browser.

• If possible, set the Home Page to your.domjudge.location/team/

• Go to the team page and check if this team is correctly identi�ed.

• If using https and a self signed certi�cate, add this certi�cate to the browser certi�cate list to

prevent annoying dialogs.

2. Make sure compilers for the supported languages are installed and working.

3. Provide teams with the command line submit client and check that it works.

• If needed, set environment variables to con�gure the client.

• Optionally distribute .netrc �les with team credentials.

• If using https and a self signed certi�cate, add this certi�cate to the local trust store (see 3.18.2

(HTTPS setup)).

4. Make the sample in- and output data from the problem set available.

5. Add your SSH key to their authorized_keys �le, so you can always access their account for wiping and

emergencies.

6. Check that internet access is blocked.

32

6 Web interface

The web interface is the main point of interaction with the system. Here you can view submissions coming

in, control judging, view the standings and edit data.

6.1 Jury and Administrator view

The jury interface has two possible views: one for jury members, and one for DOMjudge administrators.

The second view is the same as the jury view, but with more features added, and can be enabled by giving

a user the 'admin' role (instead of or next to the 'jury' role).

This separation is handy as a matter of security (jury members cannot (accidentally) modify things that

shouldn't be) and clarity (jury members are not confused / distracted by options they don't need).

Options o�ered to administrators only:

• Adding and editing any contest data

• Managing team passwords

• The con�g checker

• Refreshing the scoreboard & hostname caches

• Rejudge 'correct' submissions

• Restart 'pending' judgings

Furthermore, some quick link menu items might di�er according to usefulness for jury or admins.

A note on rejudging: it is policy within the DOMjudge system that a correct solution cannot be reverted

to incorrect. Therefore, administrator rights are required to rejudge correct or pending (hence, possibly

correct) submissions. For some more details on rejudging, see the jury manual.

6.2 The scoreboard

The scoreboard is the canonical overview for anyone interested in the contest, be it jury, teams or the general

public. It deserves to get a section of its own.

6.2.1 Colours and sorting

Each problem can be associated with a speci�c colour, e.g. the colour of the corresponding balloon that is

handed out. DOMjudge can display this colour on the scoreboard, if you �ll in the `color' attribute in the

`problem' table; set it to a valid CSS colour value (e.g. `green' or `#�0000', although a name is preferred for

displaying colour names).

It's possible to have di�erent categories of teams participating, this is controlled through the `team_category'

table. Each category has its own background colour in the scoreboard. This colour can be set with the `color'

attribute to a valid CSS colour value.

If you wish, you can also de�ne a sortorder in the category table. This is the �rst �eld that the scoreboard is

sorted on. If you want regular teams to be sorted �rst, but after them you want to sort both spectator- and

33

http://www.w3.org/TR/REC-CSS1#color-units

CHAPTER 6. WEB INTERFACE 34

business teams equally, you de�ne `0' for the regular category and `1' for the other categories. To completely

remove a category from the public (but not the jury) scoreboard, the category visible �ag can be set to `0'.

6.2.2 Starting and ending

A contest can be selected for viewing after its activation time, but the scoreboard will only become visible

to public and teams once the contest starts. Thus no data such as problems and teams is revealed before

then.

When the contest ends, the scores will remain displayed until the deactivation time passes.

6.2.3 Freezing and defrosting

DOMjudge has the option to `freeze' the public- and team scoreboards at some point during the contest.

This means that scores are no longer updated and remain to be displayed as they were at the time of the

freeze. This is often done to keep the last hour interesting for all. The scoreboard freeze time can be set

with the `freezetime' attribute in the contest table.

The scoreboard freezing works by looking at the time a submission is made. Therefore it's possible that

submissions from (just) before the freezetime but judged after it can still cause updates to the public

scoreboard. A rejudging during the freeze may also cause such updates.

If you do not set any freeze time, this option does nothing. If you set it, the public and team scoreboards will

not be updated anymore once this time has arrived. The jury will however still see the actual scoreboard.

Once the contest is over, the scores are not directly `unfrozen'. This is done to keep them secret until e.g.

the prize ceremony. You can release the �nal scores to team and public interfaces when the time is right.

You can do this either by setting a prede�ned `unfreezetime' in the contest table, or you push the `unfreeze

now' button in the jury web interface, under contests.

6.2.4 Clickability

Almost every cell is clickable in the jury interface and gives detailed information relevant to that cell. This is

(of course) not available in the team and public scoreboards, except that in the team and public interface the

team name cell links to a page with some more information and optionally a team picture, and the problem

header cells link to the problem text, if available.

6.2.5 Caching

The scoreboard is not recalculated on every page load, but rather cached in the database. It should be safe

for repeated reloads from many clients. In exceptional situations (should never occur in normal operation,

e.g. a bug in DOMjudge), the cache may become inaccurate. The jury administrator interface contains an

option to recalculate a fresh version of the entire scoreboard. You should use this option only when actually

necessary, since it puts quite a load on the database.

6.2.6 Exporting to an external website

In many cases you might want to create a copy of the scoreboard for external viewing from the internet. Just

for that, the public interface can be called with the url parameter ?static=1. It produces a version of the

scoreboard with refresh meta-tags, login facilities and links to team pages removed. This can for example

CHAPTER 6. WEB INTERFACE 35

be requested every minute via curl and the output be placed as static content on a publicly reachable

webserver.

6.3 Balloons

In many contests balloons are handed out to teams that solve a particular problem. DOMjudge can help

in this process: both a web interface and a noti�cation daemon are available to notify that a new balloon

needs to be handed out. Note that only one should be used at a time.

The web based tool is reachable from the main page in the jury interface, where each balloon has to be

checked o� by the person handing it out.

For the daemon, set the BALLOON_CMD in etc/domserver-config.php to de�ne how noti�cations are

sent. Examples are to mail to a speci�c mailbox or to send prints to a printer. When con�gured, start

bin/balloons and noti�cation will start.

Noti�cations will stop as soon as the scoreboard is frozen. Enable the show_balloons_postfreeze con�g-

uration option to keep issuing balloon noti�cations after the freeze.

7 Security

This judging system was developed with security as one of the main goals in mind. To implement this

rigorously in various aspects (restricting team access to others and the internet, restricting access to the

submitted programs on the domjudge systems, etc...) requires root privileges to di�erent parts of the whole

contest environment. Also, security measures might depend on the environment. Therefore we have decided

not to implement security measures which are not directly related to the judging system itself. We do have

some suggestions on how you can setup external security.

7.1 Considerations

Security considerations for a programming contest are a bit di�erent from those in normal conditions: nor-

mally users only have to be protected from deliberately harming each other. During a contest we also have

to restrict users from cooperatively communicating, accessing restricted resources (like the internet) and

restrict user programs running on judgehosts.

We expect that chances are small that people are trying to cheat during a programming contest: you have

to hack the system and make use of that within very limited time. And you have to not get caught and

disquali�ed afterwards. Therefore passive security measures of warning people of the consequences and only

check (or probe) things might be enough.

However we wanted the system to be as secure as possible within reason. Furthermore this software is open

source, so users can try to �nd weak spots before the contest.

7.2 Internal security

Internal security of the system relies on users not being able to get to any vital data (jury input/output and

users' solutions). Data is stored in two places: in �les on the DOMjudge system account and in the SQL

database.

Files should be protected by restricting permission to the relevant directories.

Note: the database password is stored in etc/dbpasswords.secret. This �le has to be non-readable to

teams, but has to be readable to the web server to let the jury web interface work. A solution is to make it

readable to a special group the web server runs as. This is done when using the default con�guration and

installation method and when make install-{domserver,judgehost} is run as root. The webserver group

can be set with configure �with-webserver-group=GROUP; by default it is tried to be determined from

groups available on the system, e.g. www-data or apache.

Judgehosts and the domserver communicate with each other over HTTP. Also all parties accessing the

domserver web interface obviously use this protocol. We advise to setup HTTPS so interactions between

domserver, judgehosts and teams are all protected. If you need to use a self-signed certi�cate, you can

consider to install it on the team workstations beforehand to minimize hassle.

When using IP address authentication, one has to be careful that teams are not able to spoof their IP (for

which they normally need root/administrator privileges), as they would then be able to view other teams'

submission info (not their code) and clari�cations and submit as that team. Note: This means that care has

to be taken e.g. that teams cannot simply login onto one another's computer and spoof their identity.

Problem texts can be uploaded to DOMjudge. No �ltering is performed there, so make sure they are from

trusted sources to, in the case of HTML, prevent cross site scripting code to be injected.

36

CHAPTER 7. SECURITY 37

7.3 Root privileges

A di�cult issue is the securing of submitted programs run by the jury. We do not have any control over

these sources and do not want to rely on checking them manually or �ltering on things like system calls

(which can be obscured and are di�erent per language).

Therefore we decided to tackle this issue by running these programs in a environment as restrictive as

possible. This is done by setting up a minimal chroot environment with Linux cgroup process control. For

this, root privileges on the judgehosts and statically compiled programs are needed. By also limiting all

kinds of system resources (memory, processes, time, unprivileged user and network access) we protect the

system from programs which try to hack or could crash the system.

7.4 File system privileges

Of course you must make sure that the �le system privileges are set such that there's no unauthorised

access to sensitive data, like submitted solutions or passwords. This is quite system dependent. At least

<judgehost_judgedir> should not be readable by other users than DOMjudge.

7.4.1 Permissions for the web server

The default installation sets permissions correctly for the web server user (commonly www-data or apache).

The following information is for those who want to verify the setup or make modi�cations to the settings.

Care should be taken with the etc directory: the domserver-{config,static}.php, dbpasswords.secret
and restapi.secret �les should all be readable, but dbpasswords.secret and restapi.secret should

not be readable by anyone else. This can be done for example by setting the etc directory to owner:group

<DOMjudge account>:<Web server group> and permissions drwxr-x�-, denying users other than yourself

and the web server group access to the con�guration and password �les.

If you want the web server to also store incoming submission sources on the �le system (next to the database),

then <domserver_submitdir> must be writable for the web server, see also 3.4.2 (storage of submissions).

7.5 External security

The following security issues are not handled by DOMjudge, but left to the administrator to set up.

Network tra�c between team computers, domserver and the internet should be limited to what is allowed.

Possible ways of enforcing this might be: monitor tra�c, modify �rewall rules on team computers or (what

we implemented with great satisfaction) put all team computers behind a �rewalling router.

Solutions are run within a restricted (chroot/cgroup) environment on the judgehosts which restricts outgoing

network access.

A Common problems and their

solutions

A.1 The Java virtual machine (jvm) and memory limits

DOMjudge imposes memory limits on submitted solutions. These limits are imposed before the compiled

submissions are started. On the other hand, the Java virtual machine is started via a compile-time generated

script which is run as a wrapper around the program. This means that the memory limits imposed by

DOMjudge are for the jvm and the running program within it. As the jvm uses approximately 300MB,

this reduces the limit by this signi�cant amount. See the java_javac and java_javac_detect compile

executable scripts for the implementation details.

If you see error messages of the form

Error occurred during initialization of VM

java.lang.OutOfMemoryError: unable to create new native thread

or

Error occurred during initialization of VM

Could not reserve enough space for object heap

Then the problem is probably that the jvm needs more memory than what is reserved by the Java compile

script. You should try to increase the MEMRESERVED variable in the java compile executable and check that

the con�guration variable memory limit is set larger than MEMRESERVED. If that does not help, you should

try to increase the con�guration variable process limit (since the JVM uses a lot of processes for garbage

collection).

Note that (especially on x86_64 machines) the jvm seems to preallocate huge amounts of memory, up to 2

GB! This is not actually all used, but the memory restriction in DOMjudge will �ag it as such, unless Linux

cgroups are enabled, then the actual memory used is measured. Thus, we strongly recommend using Linux

cgroups when using the Oracle jvm.

A.2 Java class naming

Java requires a speci�c naming of the main class. When declaring the main class public, the �lename must

match the class name. Therefore one should not declare the main class public; from experience however,

many teams do so. Secondly, the Java compiler generates a bytecode �le depending on the class name. There

are two ways to handle this.

The simplest Java compile script java_javac requires the main class to be named Main with method

public static void main(String args[])

The alternative (and default) is to use the script java_javac_detect, which automatically detects the main

class and even corrects the source �lename when it is declared public.

38

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 39

A.3 Memory limit errors in the web interface

When uploading large testdata �les, one can run into an error in the jury web interface of the form:

Fatal error: Allowed memory size of XX bytes exhausted (tried to

allocate YY bytes) in /home/domjudge/system/lib/lib.database.php

on line 154

This means that the PHP engine has run out of memory. The solution is to raise the memory limits for PHP.

This can be done by either editing etc/apache.conf and raising the memory_limit, upload_max_filesize

and post_max_size values to well above the size of your largest testcase. You can change these parameters

under the jury directory or by directly editing the global Apache or php.ini con�guration. Note also that

max_file_uploads must be larger than the maximum number of testcases per problem to be able to upload

and edit these in the web interface.

The optional PHP Suhosin module may also impose additional limits; check your error logging to see if these

are triggered. You may also need to raise MySQL's max_allowed_packet parameter in /etc/mysql/my.cnf

on both server and client.

A.4 Compiler errors: `runguard: root privileges not dropped'

Compiling failed with exitcode 255, compiler output:

/home/domjudge/system/bin/runguard: root privileges not dropped

When the above error occurs on submitting any source, this indicates that you are running the judgedaemon

as root user. You should not run any part of DOMjudge as root; the parts that require it will gain root by

themselves through sudo. Either run it as yourself or, probably better, create dedicated a user domjudge

under which to install and run everything.

Also do not confuse this with the domjudge-run user: this is a special user to run submissions as and should

also not be used to run normal DOMjudge processes; this user is only for internal use.

A.5 found processes still running ... apport

error: found processes still running as 'domjudge-run', check manually:

2342 apport

The above error occurs on submitting segmentation fault solutions if you have apport installed (which is

default on Ubuntu). Disable or uninstall the apport daemon on all judgehosts.

A.6 Enforcement of time limits

Time limits within DOMjudge are enforced primarily in CPU time, and secondly a more lax wall clock time

limit is used to make sure that submissions cannot idle and hog judgedaemons. The way that time limits

are calculated and passed through the system involves a number of steps, so documented here.

Time limits are set per problem in seconds. Each language in turn may de�ne a time factor (defaulting to

1) that multiplies it to get a speci�c time limit for that problem/language combination. This is the soft

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 40

timelimit . The con�guration setting timelimit overshoot is then used to calculate a hard timelimit . This

overshoot can be speci�ed in terms of an absolute and relative margin.

The soft:hard timelimit pair is passed to testcase_run.sh and then on to runguard as both wall clock

and CPU limit. Since the CPU option is passed second, this one is used by runguard when reporting whether

the soft, actual timelimit has been surpassed. The submitted program gets killed when either the hard wall

clock or CPU time has passed.

B API

DOMjudge comes with a fully featured REST API. It is based on the CCS Contest API speci�ca-

tion , to which some DOMjudge-speci�c API endpoints have been added. Full documentation on the

available API endpoints can be found at http(s)://yourhost.example.edu/domjudge/api/doc. DOM-

judge also o�ers an OpenAPI Speci�cation ver. 2 compatible JSON �le, which can be found at

http(s)://yourhost.example.edu/domjudge/api/doc.json.

41

https://clics.ecs.baylor.edu/index.php?title=Contest_API
https://clics.ecs.baylor.edu/index.php?title=Contest_API
https://swagger.io/docs/specification/2-0/basic-structure/

C Multi-site contests

This manual assumed you are running a singe-site contest; that is, the teams are located closely together,

probably in a single physical location. In a multi-site or distributed contest, teams from several remote

locations use the same DOMjudge installation. An example is a national contest where teams can participate

at their local institution.

DOMjudge supports such a setup on the condition that a central installation of DOMjudge is used to which

the teams connect over the internet. It is here where all submission processing and judging takes place.

Because DOMjudge uses a web interface for all interactions, teams and judges will interface with the system

just as if it were local. Still, there are some speci�c considerations for a multi-site contest.

Network: there must be a relatively reliable network connection between the locations and the central

DOMjudge installation, because teams cannot submit or query the scoreboard if the network is down.

Because of traversing an unsecured network, you may want to consider HTTPS for encrypting the tra�c. If

you want to limit internet access, it must be done in such a way that the remote DOMjudge installation can

still be reached.

Team authentication: the IP-based authentication will still work as long as each team workstation has a

di�erent public IP address. If some teams are behind a NAT-router and thus all present themselves to

DOMjudge with the same IP-address, another authentication scheme must be used (e.g. PHP sessions).

Judges: if the people reviewing the submissions will be located remotely as well, it's important to agree

beforehand on who-does-what, using the submissions claim feature and how responding to incoming clari�-

cation requests is handled. Having a shared chat/IM channel may help when unexpected issues arise.

Scoreboard: by default DOMjudge presents all teams in the same scoreboard. Per-site scoreboards can be

implemented either by using team categories or team a�liations in combination with the scoreboard �ltering

option.

42

D Developer information

This section contains instructions speci�cally for those wishing to modify the DOMjudge source. If you have

any questions about developing DOMjudge, or if you want to share your changes that may be useful to

others, please don't hesitate to contact us through our development mailing list .

D.1 Bootstrapping from Git repository sources

The installation steps in this document assume that you are using a downloaded tarball from the DOMjudge

website. If you want to install from Git repository sources, because you want to use the bleeding edge code

or consider to send a patch to the developers, the con�gure/build system �rst has to be bootstrapped.

This requires additional software to be installed:

• The GNU autoconf/automake toolset

• Composer - PHP Package Manager.

• Linuxdoc and gro� to build the admin and judge documentation from SGML sources and a LaTeX

installation to generate the PDF admin, judge and default team manual.

On Debian(-based) systems, the following apt command should install the additionally required packages

(next to the 3.2 (standard set of packages)):

sudo apt install autoconf automake git composer

Composer is packaged since Debian Stretch and Ubuntu Xenial. Alternatively, it can be installed by following

the documentation located here .

When this software is present, bootstrapping can be done by running make dist, which creates the

configure script, downloads and installs the PHP dependencies via composer and generates documentation

from SGML/LaTeX sources.

D.2 Maintainer mode installation

Besides the two modes of installation described in section 3.3 (Installation system), DOMjudge provides a

special maintainer mode installation. This method does an in-place installation within the source tree. This

allows one to immediately see e�ects when modifying code.

This method requires some special steps which can most easily be run via make�le rules as follows:

sudo apt install acl

make maintainer-conf [CONFIGURE_FLAGS=<extra options for ./configure>]

make maintainer-install

Note that these targets have to be executed separately and they replace the steps described in the section

3.3 (Installation system); also no �prefix �ag or other directories have to be speci�ed to configure. In

this case the binaries (e.g. judgedaemon and dj_setup_database) can be found in their respective source

directories, and are also symlinked in bin.

43

https://www.domjudge.org/mailman/listinfo/domjudge-devel
https://getcomposer.org/download

APPENDIX D. DEVELOPER INFORMATION 44

D.3 Make�le structure

The Make�les in the source tree use a recursion mechanism to run make targets within the relevant sub-

directories. The recursion is handled by the REC_TARGETS and SUBDIRS variables and the recursion step is

executed in Makefile.global. Any target added to the REC_TARGETS list will be recursively called in all

directories in SUBDIRS. Moreover, a local variant of the target with -l appended is called after recursing into

the subdirectories, so recursion is depth-�rst.

The targets dist, clean, distclean, maintainer-clean are recursive by default, which means that these

call their local -l variants in all directories containing a Make�le. This allows for true depth-�rst traversal,

which is necessary to correctly run the *clean targets: otherwise e.g. paths.mk will be deleted before

subdirectory *clean targets are called that depend on information in it.

	DOMjudge overview
	Features
	Requirements
	Copyright and licencing
	Contact

	Contest planning
	Contest hardware
	Requirements

	Installation and configuration
	Quick installation
	Prerequisites
	Installation system
	Database installation
	Web server configuration
	Fine tuning server settings
	Installation of a judgehost
	Building and installing the submit client
	Configuration
	Authentication Methods
	Executables
	Configuration of languages
	Configuration of special run and compare programs
	Alerting system
	Other configurable scripts
	Logging & debugging
	(Re)generating documentation and the team manual
	Optional features
	Upgrading

	Setting up a contest
	Configure the contest data
	Contest milestones
	Providing testdata
	Start the daemons
	Check that everything works
	Testing jury solutions

	Team Workstations
	Web interface
	Jury and Administrator view
	The scoreboard
	Balloons

	Security
	Considerations
	Internal security
	Root privileges
	File system privileges
	External security

	Common problems and their solutions
	The Java virtual machine (jvm) and memory limits
	Java class naming
	Memory limit errors in the web interface
	Compiler errors: `runguard: root privileges not dropped'
	found processes still running ... apport
	Enforcement of time limits

	API
	Multi-site contests
	Developer information
	Bootstrapping from Git repository sources
	Maintainer mode installation
	Makefile structure

