
D
O

M
D

O
M

ju
d

g
e

ju
d

g
e//\\DOMjudge team manual

Summary

Here follows a short summary of the system interface. This is meant as a quick introduction,
to be able to start using the system. It is, however, strongly advised that at least one of your
team’s members reads all of this manual. There are specific details of this jury system that
might become of importance when you run into problems. BE WARNED!

DOMjudge works through a web interface that can be found at
http://example.com/domjudge/team. See figures 1 and 2 on the next page for an impression.

Reading and writing

Solutions have to read all input from ‘standard in’ and write all output to ‘standard out’
(also known as console). You will never have to open (other) files. See appendix A for some
examples.

Submitting solutions

You can submit solutions with the command-line program submit or by the web interface:

Command-line
Use submit <problem>.<extension>, where <problem> is the label of the problem and
<extension> is a standard extension for your language. For a complete reference of all
options and examples, see submit --help.

Web interface
From your team page, http://example.com/domjudge/team, click Select file. . . in
the left column and select the file you want to submit. By default, the problem is
selected from the base of the filename and the language from the extension. Click Add
another file to add more files to the submission.

Viewing scores, submissions, etc.

Viewing scores, submissions and sending and reading clarification requests is done through
the web interface at http://example.com/domjudge/team.

End of summary

Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014

1

http://example.com/domjudge/team
http://example.com/domjudge/team
http://example.com/domjudge/team


Figure 1: the team web interface overview page.

Figure 2: the scoreboard webpage.

2 Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014



1. Submitting solutions

1 Submitting solutions

Submitting solutions can be done in two ways: with the command-line program submit or
using the web interface. One of the interfaces might not be available, depending on the system
configuration by the jury. A description of both methods follows.

1.1 Command-line: submit

Syntax: submit [options] filename.ext ...

The submit program takes the name (label) of the problem from filename and the program-
ming language from the extension ext. This can be overruled with the options -p problemname

and -l languageextension. See submit --help for a complete list of all options, extensions
and some examples. Use submit --help | more when the help text does not fit on one screen.

submit will check your file and warns you for some problems: for example when the file has
not been modified for a long time or when it’s larger than the maximum source code size.
Filenames must start with an alphanumerical character and may contain only alphanumerical
characters and +. -. You can specify multiple files to be part of this submission (see section 4
‘How are submissions being judged?’).

Then submit displays a summary with all details of your submission and asks for confirmation.
Check whether you are submitting the right file for the right problem and language and press
‘y’ to confirm. submit will report a successful submission or give an error message otherwise.

The submit program uses a directory .domjudge in the home directory of your account where
it stores temporary files for submission and also a log file submit.log. Do not remove or
change this directory, otherwise the submit program might fail to function correctly.

1.2 Web interface

Solutions can be submitted from the web interface at http://example.com/domjudge/team.
In the left column click Select file. . . to select the file for submission. DOMjudge will try
to determine the problem and language from the base and extension of the filename respec-
tively. Otherwise, select the appropriate values. Filenames must start with an alphanumerical
character and may contain only alphanumerical characters and +. -.

When you’ve selected the first source file, you may use the Add more files button to spec-
ify additional files to be part of this submission (see section 4 ‘How are submissions being
judged?’).

After you hit the submit button and confirm the submission, you will be redirected back to
your submission list page. On this page, a message will be displayed that your submission
was successful and the submission should be present in the list. An error message will be
displayed if something went wrong.

2 Viewing the results of submissions

The left column of your team web page shows an overview of your submissions. It contains
all relevant information: submission time, programming language, problem and status. The

Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014

3

http://example.com/domjudge/team


2. Viewing the results of submissions

address of your team page is http://example.com/domjudge/team.

The top of the page shows your team’s row in the scoreboard: your position and which
problems you attempted and solved. Via the menu you can view the public scoreboard page
with the scores of all teams. Many cells will show additional “title text” information when
hovering over them. The score column lists the number of solved problems and the total
penalty time. Each cell in a problem column lists the number of submissions, and if the
problem was solved, the time of the first correct submission in minutes since contest start.
This is included in your total time together with any penalty time incurred for previous
incorrect submissions. Optionally the scoreboard can be ‘frozen’ some time before the end of
the contest. The full scoreboard view will not be updated anymore, but your team row will.
Your team’s rank will be displayed as ‘?’.

2.1 Possible results

A submission can have the following results:

CORRECT The submission passed all tests: you solved this problem!

COMPILER-ERROR There was an error when compiling your program. On the submis-
sion details page you can inspect the exact error (this option might
be disabled).

TIMELIMIT Your program took longer than the maximum allowed time for this
problem. Therefore it has been aborted. This might indicate that
your program hangs in a loop or that your solution is not efficient
enough.

RUN-ERROR There was an error during the execution of your program. This
can have a lot of different causes like division by zero, incorrectly
addressing memory (e.g. by indexing arrays out of bounds), trying
to use more memory than the limit, etc. Also check that your
program exits with exit code 0!

NO-OUTPUT Your program did not generate any output. Check that you write
to standard out.

WRONG-ANSWER The output of your program was incorrect. This can happen sim-
ply because your solution is not correct, but remember that your
output must comply exactly with the specifications of the jury.

PRESENTATION-ERROR The output of your program has differences in presentation
with the correct results (for example in the amount of whitespace).
This will, like WRONG-ANSWER, count as an incorrect submis-
sion. This result is optional and might be disabled.

TOO-LATE Bummer, you submitted after the contest ended! Your submission
is stored but will not be processed anymore.

4 Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014

http://example.com/domjudge/team


3. Clarifications

3 Clarifications

All communication with the jury is to be done with clarifications. These can be found in the
right column on your team page. Both clarification replies from the jury and requests sent by
you are displayed there.

There is also a button to submit a new clarification request to the jury. This request is only
readable for the jury and they will respond as soon as possible. Answers that are relevant for
everyone will be sent to everyone.

4 How are submissions being judged?

The DOMjudge jury system is fully automated. In principle no human interaction is necessary.
The judging is done in the following way:

4.1 Submitting solutions

With the submit program or the web interface (see section 1) you can submit a solution to a
problem to the jury. Note that you have to submit the source code of your program (and not
a compiled program or the output of your program).

There your program enters a queue, awaiting compilation, execution and testing on one of
the jury computers.

4.2 Compilation

Your program will be compiled on a jury computer running Linux. All submitted source
files will be passed to the compiler which generates a single program to run out of them; for
languages where that is relevant, the first specified file will be considered the ‘main’ source
file.

Using a different compiler or operating system than the jury should not be a problem. Be
careful however, not to use any special compiler and/or system specific things (you may be
able to check compiler errors on the team page).

The jury system defines ONLINE JUDGE and DOMJUDGE. These are defined as preprocessor
symbols in gecompiled languages and as (environment) variables in scripted languages.

4.3 Testing

After your program has compiled successfully it will be executed and its output compared
to the output of the jury. Before comparing the output, the exit status of your program is
checked: if your program gives the correct answer, but exits with a non-zero exit code, the
result will be a run-error! There are some restrictions during execution. If your program
violates these it will also be aborted with a run-error, see section 4.4.

When comparing program output, it has to exactly match to output of the jury. So take care
that you follow the output specifications. In case of problem statements which do not have

Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014

5



4. How are submissions being judged?

unique output (e.g. with floating point answers), the jury may use a modified comparison
function.

4.4 Restrictions

To prevent abuse, keep the jury system stable and give everyone clear and equal environments,
there are some restrictions to which all submissions are subjected:

compile time Compilation of your program may take no longer than 30 seconds.
After that compilation will be aborted and the result will be a compile
error. In practice this should never give rise to problems. Should this
happen to a normal program, please inform the jury right away.

source size The total amount of source code in a single submission may not
exceed 256 kilobytes, otherwise your submission will be rejected.

memory During execution of your program, there are 524288 kilobytes of mem-
ory available. This is the total amount of memory (including program
code, statically and dynamically defined variables, stack, Java VM,
. . . )! If your program tries to use more memory, it will abort, result-
ing in a run error.

number of processes You are not supposed to create multiple processes (threads). This
is to no avail anyway, because your program has exactly 1 processor
fully at its disposal. To increase stability of the jury system, there is
a maximum of 15 processes that can be run simultaneously (including
processes that started your program).

People who have never programmed with multiple processes (or have
never heard of “threads”) do not have to worry: a normal program
runs in one process.

4.5 Java class naming

Compilation of Java sources is somewhat complicated by the class naming conventions used:
there is no fixed entry point; any class can contain a method main. Furthermore, a class
declared public must be located in an indentically named file.

In the default configuration of DOMjudge this is worked around by autodetecting the main
class. When this feature is not used, then the main class should be “Main”, with method
“public static void main(String args[])”, see also the Java code example in appendix A.

6 Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014



A. Code examples

A Code examples

Below are a few examples on how to read input and write output for a problem.

The examples are solutions for the following problem: the first line of the input contains the
number of testcases. Then each testcase consists of a line containing a name (a single word)
of at most 99 characters. For each testcase output the string “Hello <name>!” on a separate
line.

Sample input and output for this problem:

Input Output

3

world

Jan

SantaClaus

Hello world!

Hello Jan!

Hello SantaClaus!

Note that the number 3 on the first line indicates that 3 testcases follow.

A solution for this problem in C:

1 #include <stdio.h>

2

3 int main()

4 {

5 int i, ntests;

6 char name[100];

7

8 scanf("%d\n", &ntests);

9

10 for(i=0; i<ntests; i++) {

11 scanf("%s\n", name);

12 printf("Hello %s!\n", name);

13 }

14

15 return 0;

16 }

Notice the last return 0; to prevent a run-error!

Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014

7



A. Code examples

A solution in C++:

1 #include <iostream>

2 #include <string>

3

4 using namespace std;

5

6 int main()

7 {

8 int ntests;

9 string name;

10

11 cin >> ntests;

12 for(int i = 0; i < ntests; i++) {

13 cin >> name;

14 cout << "Hello " << name << "!" << endl;

15 }

16

17 return 0;

18 }

A solution in Java:

1 import java.io.*;

2

3 class Main

4 {

5 public static BufferedReader in;

6

7 public static void main(String[] args) throws IOException

8 {

9 in = new BufferedReader(new InputStreamReader(System.in));

10

11 int nTests = Integer.parseInt(in.readLine());

12

13 for (int i = 0; i < nTests; i++) {

14 String name = in.readLine();

15 System.out.println("Hello "+name+"!");

16 }

17 }

18 }

8 Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014



A. Code examples

A solution in C#:

1 using System;

2

3 public class Hello

4 {

5 public static void Main(string[] args)

6 {

7 int nTests = int.Parse(Console.ReadLine());

8

9 for (int i = 0; i < nTests; i++) {

10 string name = Console.ReadLine();

11 Console.WriteLine("Hello "+name+"!");

12 }

13 }

14 }

A solution in Pascal:

1 program example(input, output);

2

3 var

4 ntests, test : integer;

5 name : string[100];

6

7 begin

8 readln(ntests);

9

10 for test := 1 to ntests do

11 begin

12 readln(name);

13 writeln(’Hello ’, name, ’!’);

14 end;

15 end.

And finally a solution in Haskell:

1 import Prelude

2

3 main :: IO ()

4 main = do input <- getContents

5 putStr.unlines.map (\x -> "Hello " ++ x ++ "!").tail.lines $ input

Version/revision: 4.0.2 / cfa6ce5
Last modified: August 16, 2014
Generated: August 19, 2014

9


	Submitting solutions
	Command-line: submit
	Web interface

	Viewing the results of submissions
	Possible results

	Clarifications
	How are submissions being judged?
	Submitting solutions
	Compilation
	Testing
	Restrictions
	Java class naming

	Code examples

