
DOMjudge Administrator’s Manual
by the DOMjudge team Sat, 16 Aug 2014 17:19:21 +0100

This document provides information about DOMjudge installation, configuration and operation for the DOMjudge
administrator. A separate manual is available for teams and for jury members. Document version: cfa6ce5

Contents

1 DOMjudge overview 4

1.1 Features . 4

1.2 Requirements . 4

1.3 Copyright and licencing . 5

1.4 Contact . 6

2 Contest planning 7

2.1 Contest hardware . 7

2.2 Requirements . 7

3 Installation and configuration 10

3.1 Quick installation . 10

3.2 Prerequisites . 11

3.3 Installation system . 13

3.4 Configuration . 14

3.5 Executables . 14

3.6 Configuration of languages . 14

3.7 Configuration of special run and compare programs . 15

3.8 Alerting system . 16

3.9 Other configurable scripts . 17

3.10 Submission methods . 17

3.11 Database installation . 17

3.12 Web server configuration . 18

3.13 Logging & debugging . 19

3.14 Installation of a judgehost . 19

3.15 Building and installing the submit client . 20

3.16 (Re)generating documentation and the team manual . 20

3.17 Optional features . 21

3.18 Upgrading . 23

2

CONTENTS 3

4 Setting up a contest 24

4.1 Configure the contest data . 24

4.2 Contest milestones . 27

4.3 User authentication . 27

4.4 Providing testdata . 29

4.5 Start the daemons . 29

4.6 Check that everything works . 29

4.7 Testing jury solutions . 30

5 Team Workstations 31

6 Web interface 32

6.1 Jury and Administrator view . 32

6.2 The scoreboard . 32

6.3 Balloons . 34

7 Security 35

7.1 Considerations . 35

7.2 Internal security . 35

7.3 Root privileges . 36

7.4 File system privileges . 36

7.5 External security . 36

A Common problems and their solutions 38

A.1 Java compilers and the chroot . 38

A.2 The Java virtual machine (jvm) and memory limits . 38

A.3 Java class naming . 39

A.4 GCJ compiler warnings . 39

A.5 C#/mono support . 40

A.6 Memory limit errors in the web interface . 40

A.7 Compiler errors: ‘runguard: root privileges not dropped’ . 40

B Multi-site contests 41

C Developer information 42

C.1 Bootstrapping from Git repository sources . 42

C.2 Maintainer mode installation . 42

C.3 Makefile structure . 42

1 DOMjudge overview

DOMjudge is a system for running programming contests, like the ACM ICPC regional and world champi-
onship programming contests.

This means that teams are on-site and have a fixed time period (mostly 5 hours) and one computer to solve a
number of problems (mostly 8-11). Problems are solved by writing a program in one of the allowed languages,
that reads input according to the problem input specification and writes the correct, corresponding output.

The judging is done by submitting the source code of the solution to the jury. There the jury system
automatically compiles and runs the program and compares the program output with the expected output.

This software can be used to handle the submission and judging during such contests. It also handles
feedback to the teams and communication on problems (clarification requests). It has web interfaces for the
jury, the teams (their submissions and clarification requests) and the public (scoreboard).

1.1 Features

A global overview of the features that DOMjudge provides:

• Automatic judging with distributed (scalable) judge hosts

• Web interface for portability and simplicity

• Modular system for plugging in languages/compilers and validators

• Detailed jury information (submissions, judgings, diffs) and options (rejudge, clarifications, resubmit)

• Designed with security in mind

• Has been used in many live contests

• Open Source, Free Software

1.2 Requirements

This is a (rough) list of the requirements for DOMjudge.

• At least one machine running Linux, with (sudo) root access

• Apache web server with PHP 5.2 or newer and PHP-command line interface

• MySQL or MariaDB database server version 4.1.0 or newer

• Compilers for the languages you want to support

A 2.2 (detailed list of requirements) is contained in the 3 (Installation and Configuration) chapter.

4

CHAPTER 1. DOMJUDGE OVERVIEW 5

1.3 Copyright and licencing

DOMjudge is developed by Jaap Eldering, Keith Johnson, Thijs Kinkhorst and Tobias Werth; Peter van de
Werken has retired as developer. Many other people have contributed: Jeroen Bransen, Stijn van Drongelen,
Rob Franken, Nicky Gerritsen, Jacob Kleerekoper, Jan Kuipers, Jeroen Schot, and Jeroen van Wolffelaar.
Some code has been ported from the ETH Zurich fork by Christoph Krautz, Thomas Rast et al.

Development is hosted at Study Association A-Eskwadraat , Utrecht University , The Netherlands.

It is Copyright (c) 2004 - 2014 by the DOMjudge developers and its contributors.

DOMjudge, including its documentation, is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License <http://www.gnu.org/copyleft/gpl.html> as published by the
Free Software Foundation; either version 2, or (at your option) any later version. See the file COPYING.

This software is partly based on code by other people. These acknowledgements are made in the respective
files, but we would like to name them here too:

• dash (i386) is included, built from the Debian dash sources (copyright various people, see
doc/dash.copyright).

• basename.h is a modified version from the GNU libiberty library (copyright Free Software Foundation).

• lib.database.php by Jeroen van Wolffelaar et al.

• runguard.c was originally based on timeout from The Coroner’s Toolkit by Wietse Venema.

• sorttable.js by Stuart Langridge.

• jscolor.js by Jan Odvarko.

• tabber.js by Patrick Fitzgerald.

• Ace code editor.

• Flot/jQuery JavaScript libraries.

• The DOMjudge logo is based on the NKP 2004 logo made by Erik van Sebille.

• Several icons have been taken from the phpMyAdmin project.

• Several M4 autoconf macros from the Autoconf archive by various people are included under m4/.

1.3.1 Non-GPL licenced parts of DOMjudge

A binary version of the dash shell (statically compiled) is distributed with DOMjudge. This program is
copyright by various people under the BSD licence and a part under the GNUGPL version 2, see COPYING.BSD
and doc/dash.copyright for more details. Sources can be downloaded from:

<http://www.domjudge.org/sources/> .

The following JavaScript snippets/libraries are included:

• The sorttable.js script is copyright by Stuart Langridge and licenced under the MIT licence, see
COPYING.MIT. It was downloaded from <http://www.kryogenix.org/code/browser/sorttable/> .

• The jscolor.js script is copyright by Jan Odvarko and licenced under the GNU LGPL. It was obtained
at <http://jscolor.com> .

http://www.a-eskwadraat.nl/
http://www.uu.nl/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/software/autoconf-archive/
http://www.domjudge.org/sources/
http://www.kryogenix.org/code/browser/sorttable/
http://jscolor.com

CHAPTER 1. DOMJUDGE OVERVIEW 6

• The tabber.js script is copyright by Patrick Fitzgerald and licenced under the MIT licence, see
COPYING.MIT. It was downloaded from <http://www.barelyfitz.com/projects/tabber/> .

• The Ace code editor is copyright by Ajax.org B.V. and licenced under the BSD licence, see
COPYING.BSD. It was downloaded from <https://github.com/ajaxorg/ace-builds> .

• The Flot/jQuery libraries are copyright by various people and licenced under the MIT licence, see
COPYING.MIT. It was downloaded from <http://www.flotcharts.org/> .

The M4 autoconf macros are licenced under all-permissive and GPL3+ licences; see the respective files for
details.

DOMjudge includes specifications of a number of interfaces. These specifications are dedicated to the public
domain, as specified in the Creative Commons Public Domain Dedication (CC0 1.0) . These specifications
can be found as appendices in the judge manual and as separate ASCII text files in the documentation
directory:

• The checktestdata language grammar.

• The DOMjudge problem format zip-bundle.

1.3.2 About the name and logo

The name of this judging system is inspired by a very important and well known landmark in the city of
Utrecht: the dome tower, called the ‘Dom’ in Dutch. The logo of the 2004 Dutch Programming Champi-
onships (for which this system was originally developed) depicts a representation of the Dom in zeros and
ones. We based the name and logo of DOMjudge on that.

We would like to thank Erik van Sebille, the original creator of the logo. The logo is under a GPL licence,
although Erik first suggested a "free as in beer" licence first: you’re allowed to use it, but you owe Erik a
free beer in case might you encounter him.

1.4 Contact

The DOMjudge homepage can be found at: http://www.domjudge.org/

We have a low volume mailing list for announcements of new releases.

The authors can be reached through the development mailing list: domjudge-devel@lists.a-eskwadraat.nl .
You need to be subscribed before you can post. See the list information page for subscription and more
details.

Some developers and users of DOMjudge linger on the IRC channel dedicated to DOMjudge on the Freenode
network: server irc.freenode.net, channel #domjudge. Feel free to drop by with your questions and
comments.

http://www.barelyfitz.com/projects/tabber/
https://github.com/ajaxorg/ace-builds
http://www.flotcharts.org/
http://creativecommons.org/publicdomain/zero/1.0/
http://www.domjudge.org/
https://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-announce
mailto:domjudge-devel@lists.a-eskwadraat.nl
https://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-devel

2 Contest planning

2.1 Contest hardware

DOMjudge discerns the following kinds of hosts:

Team computer

Workstation for a team, where they develop their solutions and from which they submit them to the
jury system. The only part of DOMjudge that runs here is the optional command line submit client;
all other interaction by teams is done with a browser via the web interface.

DOMjudge server

A host that receives the submissions, runs the database and serves the web pages. This host will run
Apache, and MySQL. Also called domserver for brevity.

Judgehosts

A number of hosts, at least one, that will retrieve submitted solutions from the DOMjudge server,
compile and run them and send the results back to the server. They will run the judgedaemon from
DOMjudge.

Jury / admin workstations

The jury members (persons) that want to monitor the contest need just any workstation with a web
browser to access the web interface. No DOMjudge software runs on these machines.

One (virtual) machine is required to run the DOMserver. The minimum amount of judgehosts is also one,
but preferably more: depending on configured timeouts, judging one solution can tie up a judgehost for
several minutes, and if there’s a problem with one judgehost it can be resolved while judging continues on
the others.

As a rule of thumb, we recommend one judgehost per 20 teams.

However, overprovisioning does not hurt: DOMjudge scales easily in the number of judegehosts, so if hardware
is available, by all means use it. But running a contest with fewer machines will equally work well, only the
waiting time for teams to receive an answer may increase.

Each judgehost should be a dedicated (virtual) machine that performs no other tasks. For example, although
running a judgehost on the same machine as the domserver is possible, it’s not recommended except for testing
purposes. Judgehosts should also not double as local workstations for jury members. Having all judgehosts
be of uniform hardware configuration helps in creating a fair, reproducible setup; in the ideal case they are
run on the same type of machines that the teams use.

DOMjudge supports running multiple judgedaemons in parallel on a single judgehost machine. This might
be useful on multi-core machines. Note that although each judgedaemon process can be bound to one single
CPU core (using Linux cgroups), shared use of other resources such as disk I/O might still have a minor
effect on run times. For more details on using this, see the section 3.17 (Installation: optional features).

2.2 Requirements

2.2.1 System requirements

The requirements for the deployment of DOMjudge are:

7

CHAPTER 2. CONTEST PLANNING 8

• Computers for the domserver and judgehosts must run Linux or a Unix variant. This software has
been developed mostly under Debian GNU/Linux, and the manual adds some specific hints for that,
which also apply to Debian derivative distributions like Ubuntu. DOMjudge has been tested a bit
under other Linux distributions and FreeBSD. We try to adhere to POSIX standards.

• (Local) root access on the domserver and judgehosts for configuring sudo, installing some files with
restricted permissions and for (un)mounting the proc file system when using Java (or other interpreted
languages). See 7.3 (Security: root privileges) for more details.

• A TCP/IP network which connects all DOMjudge and team computers. Extra network security which
restricts internet access and access to other services (ssh, mail, talk, etc..) is advisable, but not provided
by this software, see 7.5 (Security: external security) for more details. All network-based interactions
are done over HTTP or HTTPS (tcp port 80 or 443):

– HTTP traffic from teams, the public and jury to the web server.

– The judgehosts connect to the DOMjudge API over HTTP.

– The ‘submit’ command line client connects to the web server also via HTTP.

When using the IP_ADDRESS authentication scheme, then each team computer needs to have a unique
IP address from the view of the DOMjudge server, see 4.3 (Contest setup: team authentication) for
more details.

2.2.2 Software requirements

The following software is required for running DOMjudge.

• For every supported programming language a compiler is needed; preferably one that can generate
statically linked stand-alone executables.

• Apache web server with support for PHP >= 5.2.0 and the mysqli and json extensions for PHP. PHP
needs to be running as an Apache module (the most common configuration); a (fast)CGI setup is not
currently supported. We also recommend the posix extension for extra debugging information.

• MySQL or MariaDB >= 4.1.x database and client software

• PHP >= 5.2.0 command line interface and the curl and json extensions.

• A POSIX compliant shell in /bin/sh (e.g. bash or ash)

• A statically compiled POSIX shell, located in lib/judge/sh-static (dash is included for Linux IA32)

• A lot of standard (GNU) programs, a probably incomplete list: hostname, date, dirname, basename,
touch, chmod, cp, mv, cat, grep, diff, wc, mkdir, mkfifo, mount, sleep, head, tail, pgrep, zip, unzip

• sudo to gain root privileges

• A LaTeX installation to regenerate the team PDF-manual with site specific configuration settings
included.

The following items are optional, but may be required to use certain functionality.

• phpMyAdmin , to be able to access the database in an emergency or for data import/export

• An NTP daemon (for keeping the clocks between jury system and team workstations in sync)

• libcurl and libJSONcpp to use the command line submit client.

http://www.phpmyadmin.net/
http://curl.haxx.se/libcurl/
http://jsoncpp.sourceforge.net/

CHAPTER 2. CONTEST PLANNING 9

• libmagic (for command line submit client to detect binary file submissions)

• PECL xdiff extension (to reliably make diffs between submissions, DOMjudge will try alternative
approaches if it’s not available)

• beep for audible notification of errors, submissions and judgings, when using the default alert script.

Software required for building DOMjudge:

• gcc and g++ with standard libraries. Other compilers and libraries might also work: we have success-
fully compiled DOMjudge sources with Clang from the LLVM project; the C library should support
the POSIX.1-2008 specification. Note that building the optional checktestdata program requires a
compiler that supports C++11.

• GNU make

• The Boost regular expression library and the GNU Multiple Precision library to build the
checktestdata program for advanced checking of input/output data correctness. These are optional
and can be disabled with the configure option –disable-checktestdata.

2.2.3 Requirements for team workstations

In the most basic setup the team workstations only need (next to the tools needed for program development)
a web browser. The web interface fully works with any known browser, but a HTML5-capable browser
adds more convenience funcions. With JavaScript disabled, all basic functionality remains working, with the
notable exception of multiple file uploads on non-HTML5-ready browsers.

http://www.darwinsys.com/file/
http://pecl.php.net/package/xdiff
http://www.johnath.com/beep/
http://clang.llvm.org/
http://www.boost.org/
http://www.boost.org/doc/libs/release/libs/regex/
http://gmplib.org/

3 Installation and configuration

This chapter details a fresh installation of DOMjudge. The first section is a Quick Installation Reference,
but that should only be used by those already acquainted with the system. A detailed guide follows after
that.

3.1 Quick installation

Note: this is not a replacement for the thorough installation instructions below, but more a cheat-sheet for
those who’ve already installed DOMjudge before and need a few hints. When in doubt, always consult the
full installation instruction.

External software:

• Install the MySQL-server and set a root password for it.

• Install Apache, PHP and (recommended) phpMyAdmin.

• Make sure PHP works for the web server and command line scripts.

• Install necessary compilers on the judgehosts.

• See also 3.2 (an example command line for Debian and RedHat).

DOMjudge:

• Extract the source tarball and run ./configure [–enable-fhs] –prefix=<basepath>.

• Run make domserver judgehost docs or just those targets you want installed on the current host.

• Run make install-{domserver,judgehost,docs} as root to install the system.

On the domserver host:

• Install the MySQL database using bin/dj-setup-database -u root -r install on the domserver
host.

• Add etc/apache.conf to your Apache configuration, edit it to your needs, reload web
server: sudo ln -s .../domserver/etc/apache.conf /etc/apache2/conf.d/domjudge.conf &&
sudo apache2ctl graceful

• Check that the web interface works (/team, /public and /jury).

• Change the admin password from its default value (’admin’).

• Check that the API (/api) works and create credentials for the judgehosts.

• Create accounts and add useful contest data through the jury web interface or with phpMyAdmin.

• Run the config checker in the jury web interface.

On the judgehosts:

10

CHAPTER 3. INSTALLATION AND CONFIGURATION 11

• RedHat: useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run
Debian: useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run
(check specific options of useradd, since these vary per system)

• Add to /etc/sudoers.d/ or append to /etc/sudoers the sudoers configuration as in
etc/sudoers-domjudge.

• Put the right credentials in the file etc/restapi.secret on all judgehosts.

• Optionally build a chroot to support interpreted or byte-compiled langauges such as Java, see the
appendix on A.1 (setting up a chroot).

• Start the judge daemon: bin/judgedaemon

It should be done by now. As a check that (almost) everything works, the set of test sources can be submitted:

cd tests
make check

Note that this requires some configuration depending on the AUTH_METHOD selected in
etc/domserver-config.php, see 3.15 (submit client configuration) for more details.

Then, in the main jury web interface, select the admin link judging verifier to automatically verify most of
the test sources, except for a few with multiple possible outcomes; these have to be verified by hand. Read
the test sources for a description of what should (not) happen.

Optionally:

• Install the submit client on the team workstations.

• Generate passwords for all the teams in the web interface.

• Further tighten the security of the system, e.g. by applying firewall rules.

• Start the balloon notification daemon: cd bin; ./balloons; or use the balloon web interface.

• Setup the Java chroot environment on the judgehosts to use Java with chroot:
bin/dj_make_chroot <chrootdir> <architecture>
$EDITOR lib/judge/chroot-startstop.sh
enable the chroot-startstop.sh script in etc/judgehost-config.php and add
etc/sudoers-domjudge to /etc/sudoers.d/ or append it to /etc/sudoers.

• Set up cgroup support in the judgedaemons.

• For additional features in the jury web interface, the following PHP extensions can be installed:

– xdiff PECL extension for diffs between submissions;

3.2 Prerequisites

For a detailed list of the hardware and software requirements, please refer to the previous chapter on contest
planning.

CHAPTER 3. INSTALLATION AND CONFIGURATION 12

3.2.1 Debian and RedHat installation commands

For your convenience, the following command will install needed software on the DOMjudge server as men-
tioned above when using Debian GNU/Linux, or one of its derivate distributions like Ubuntu.

apt-get install gcc g++ make zip unzip mysql-server \
apache2 php5 php5-cli libapache2-mod-php5 php5-mysql php5-json \
bsdmainutils phpmyadmin ntp \
libboost-regex-dev libgmp3-dev linuxdoc-tools linuxdoc-tools-text \
groff texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended texlive-lang-dutch

The following command can be used on RedHat Enterprise Linux, and related distributions like CentOS and
Fedora.

yum install gcc gcc-c++ make zip unzip mariadb-server \
httpd php php-cli php-mbstring php-mysql \
boost-devel gmp-devel ntp linuxdoc-tools \
texlive-collection-latexrecommended texlive-wrapfig

Note that the TeX Live packages expdlist, moreverb, and svn still have be installed manually to rebuild
the team manuals. Furthermore, phpmyadmin is available from the Fedora EPEL repository .

On a judgehost, the following should be sufficient. The last two lines show some example compilers to install
for C, C++, Java (GNU), Java (Oracle), Haskell and Pascal; change the list as appropriate.

For Debian:

apt-get install make sudo debootstrap php5-cli php5-curl php5-json procps \
gcc g++ gcj-jre-headless gcj-jdk openjdk-7-jre-headless openjdk-7-jdk \
ghc fp-compiler

For RedHat:

yum install make sudo php-cli php-mbstring php-process procps-ng \
gcc gcc-c++ glibc-static libstdc++-static \
java-1.7.0-openjdk-headless java-1.7.0-openjdk-devel \
ghc-compiler fpc

Note that fpc is not available in RedHat 7.

Finally, to build the command-line submit client, install the following additional software.

apt-get install libcurl4-gnutls-dev libjsoncpp-dev libmagic-dev

yum install libcurl-devel jsoncpp-devel file-devel

The package jsoncpp-devel is available in Fedora, but not in RHEL/CentOS.

Libmagic is not strictly required, but highly recommended for detecting binary file submissions. These
libraries are statically linked into the submit binary so that these libraries are not needed on the team
workstations where submit is installed.

https://fedoraproject.org/wiki/EPEL

CHAPTER 3. INSTALLATION AND CONFIGURATION 13

3.3 Installation system

The DOMjudge build/install system consists of a configure script and makefiles, but when installing it,
some more care has to be taken than simply running ’./configure && make && make install’. DOMjudge
needs to be installed both on the server and on the judgehosts. These require different parts of the complete
system to be present and can be installed separately. Within the build system these parts are referred to as
domserver, judgehost and additionally docs for all documentation.

There are three different methods for installing DOMjudge:

Single directory tree

With this method all DOMjudge related files and programs are installed in a single directory tree which
is specified by the prefix option of configure, like

./configure --prefix=$HOME/domjudge

This will install each of the domserver, judgehost, docs parts in a subdirectory
$HOME/domjudge/domserver etc. These subdirectories can be overridden from the defaults
with options like –with-domserver_root=DIR, see configure –help for a complete list. The prefix
defaults to /opt/domjudge.

Besides the installed files, there will also be directories for logging, temporary files, submitted sources
and judging data:

log

contains all log files.

tmp

contains temporary files.

submissions

(optionally) on the domserver contains all correctly submitted files: as backup only, the database
is the authoritative source. Note that this directory must be writable by the web server for this
feature to work.

judgings

location on judgehosts where submissions are tested, each in its own subdirectory.

This method of installation is the default and probably most practical for normal purposes as it keeps
all files together, hence easily found.

FHS compliant

This method installs DOMjudge in directories according to the Filesystem Hierarchy Standard . It can
be enabled by passing the option –enable-fhs to configure and in this case the prefix defaults to
/usr/local. Files will be placed e.g. in PREFIX/share/domjudge, PREFIX/bin, PREFIX/var/log,
PREFIX/etc/domjudge, while /tmp will be used for temporary files. You may want to pass options
–sysconfdir=/etc and –localstatedir=/var to configure to disable the prefix for these.

Maintainer install

Meant for those wishing to do development on the DOMjudge source code. See the C (appendix with
developer information).

After running the configure script, the system can be built and installed. Each of the domserver,
judgehost, docs parts can be built and installed separately, respectively by:

http://www.pathname.com/fhs/

CHAPTER 3. INSTALLATION AND CONFIGURATION 14

make domserver && sudo make install-domserver
make judgehost && sudo make install-judgehost
make docs && make install-docs

Note that even when installing e.g. in your own home directory, root privileges are still required for domserver
and judgehost installation, because user and group ownership of password files, some directories and to give
sudo access to runguard. One should not run DOMjudge programs and daemons under the root user
however, but under a normal user: runguard is specifically designed to be the only part invoked as root
(through sudo) to make this unnecessary and running as root will give rise to problems, see A.7 (runguard:
root privileges not dropped) in the common problems section.

For a list of basic make targets, run make in the source root directory without arguments.

3.4 Configuration

Configuration of the judge system is mostly done by editing the configuration variables on the page
Configuration settings available in the administrator interface, and changes take effect immediately. The
administrator interface can be reached on http://yourhost/domjudge/jury/ and the default username is
admin with password admin. Make sure to change the default password immediately.

Some settings that are tightly coupled to the filesystem can be configured in the files in etc:
domserver-config.php, judgehost-config.php, common-config.php for the configuration options of
the domserver, judgehost and shared configuration options respectively. Descriptions of settings are in-
cluded in these files. The judgedaemon must be restarted for changes to take effect, while these are directly
picked up by the webinterfaces.

Besides these settings, there are a few other places where changes can be made to the system, see 3.9 (other
configurable scripts).

3.5 Executables

DOMjudge supports executable archives (in ZIP format) for configuration of languages, special run and
compare programs. The archive must contain an executable file named build. When deploying a new (or
changed) executable to a judgehost build is executed once. Afterwards an executable file name run must
exist (it may have existed before).

Executables may be changed via the web interface in an online editor. Changes apply immediately to all
further uses of that executable.

3.6 Configuration of languages

Compilers can be configured by creating or selecting/editing an executable in the web interface. When
compiling a set of source files, the run executable is invoked with the following arguments: destination file
name, memory limit (in KB), main (first) source file, other source files. For more information, see for example
the executables c or java_javac_detect in the web interface. Note that compile scripts are included for
the most common languages already.

Interpreted languages and non-statically linked binaries can in principle also be used, but requires that all
dependencies are added to the chroot environment.

CHAPTER 3. INSTALLATION AND CONFIGURATION 15

Interpreted languages do not generate an executable and in principle do not need a compilation step. How-
ever, to be able to use interpreted languages (also Oracle’s Java), a script must be generated during the
compilation step, which will function as the executable: the script must run the interpreter on the source.
See pl and java_javac_detect in the list of executables.

DOMjudge supports the use of Oracle Java within a chroot environment. For this, a chroot environment
which includes the Java libraries must first be built. This can be accomplished with the included script
dj_make_chroot: run this as root and pass as arguments the target directory to build the chroot environment
in and as second argument the target machine architecture. Start the script without arguments for usage
information. See also sections 3.14 (Installation of a judgehost) and A.1 (Problems: Java & chroot).

3.7 Configuration of special run and compare programs

To allow for problems that do not fit within the standard scheme of fixed input and/or output, DOMjudge
has the possibility to change the way submissions are run and checked for correctness.

The back end script testcase_run.sh that handles the running and checking of submissions, calls separate
programs for running submissions and comparison of the results. These can be specialised and adapted to
the requirements per problem. For this, one has to create executable archives as described above. Then
the executable must be selected in the special_run and/or special_compare fields of the problem (an
empty value means that the default run and compare scripts should be used). One can select the default
compare executable in the global configuration settings. When creating custom run and compare programs,
we recommend re-using wrapper scripts that handle the tedious, standard part. See the boolfind example
for details.

3.7.1 Compare programs

Implementing a special compare program, also called a validator , can be done by writing a program that is
run by a wrapper script like the run script in the boolfind example.

Copy this wrapper to your new executable archive and let the jury write a checker program which can be
called as

check_<tag> <testdata.in> <program.out> <testdata.out>

This program should write some kind of difference to stdout. No output from the checker program results
in a correct verdict and a nonzero exitcode in an internal (system) error. See as an example the included
program check_float, which compares floating point numbers. The name of the check program and any
parameters can also be modified in the wrapper (i.e. run) script.

For example, to compare output while ignoring DOS/UNIX newline differences, one can copy the wrapper
from check_float and in that file set the variable CHECK_PROGRAM="‘which diff‘" and replace the line

"$CHECK_PROGRAM" $CHECK_OPTIONS "$TESTIN" "$PROGRAM" "$TESTOUT" > "$DIFFOUT"

by the lines

sed -i ’s/\r$//’ "$TESTOUT"
sed ’s/\r$//’ "$PROGRAM" | $CHECK_PROGRAM -a - "$TESTOUT" > "$DIFFOUT"

CHAPTER 3. INSTALLATION AND CONFIGURATION 16

Note that these commands will modify the local copy of the jury testdata, but the original output generated
by the team’s solution is retained, and a plain diff output is generated. Next, for each problem that you
want to use this validator for, select the newly created executable in the special_compare field. You may
also change the default compare script in the global configuration settings.

As an alternative to this modified validator script, one can accept presentation errors as correct answers by
adding the mapping

’presentation-error’ => ’correct’,

to the results_remap configuration variable (to be found in the admin web interface under configuration
settings).

For more details on modifying validator scripts, see the comments at the top of the files testcase_run.sh
and the compare wrapper (i.e. run in the boolfind_cmp example).

DOMjudge supports a presentation-error result. The default compare program returns this result when
output only differs by whitespace; this is counted as an incorrect submission. The script compare_wrapper
does not support presentation error results however. By default presentation errors are remapped to wrong
answer; this can be changed with results_remap.

3.7.2 Run programs

Special run programs can be used, for example, to create an interactive problem, where the contestants’
program exchanges information with a jury program and receives data depending on its own output. The
problem boolfind is included as an example interactive problem, see docs/examples/boolfind.pdf for the
description.

Usage is similar to compare programs: you can either create a program run_<tag> yourself, or use the
provided wrapper script, which handles bi-directional communication between a jury program and the con-
testants’ program on stdin/stdout (see the run file in the boolfind_run executable).

For the first case, the calling syntax that the program must accept is equal to the calling syntax of
run_wrapper, which is documented in that file. When using run_wrapper, you should copy it to run
in your executable archive. The jury must write a program named exactly runjury_<tag>, accepting the
calling syntax

runjury_<tag> <testdata.in> <program.out>

where the arguments are files to read input testdata from and write program output to, respectively. This
program will communicate via stdin/stdout with the contestants’ program. A special compare program
must probably also be created, so the exact data written to <program.out> is not important, as long as
the correctness of the contestants’ program can be deduced from the contents by the compare program.

3.8 Alerting system

DOMjudge includes an alerting system. This allows the administrator to receive alerts when important
system events happen, e.g. an error occurs, or a submission or judging is made.

These alerts are passed to a plugin script alert which can easily be adapted to fit your needs. The default
script emits different beeping sounds for the different messages when the beep program is available, but it
could for example also be modified to send a mail on specific issues, connect to monitoring software like
Nagios, etc. For more details, see the script lib/alert.

CHAPTER 3. INSTALLATION AND CONFIGURATION 17

3.9 Other configurable scripts

There are a few more places where some configuration of the system can be made. These are sometimes
needed in non-standard environments.

• In bin/dj_make_chroot on a judgehost some changes to variables can be made, most notably
DEBMIRROR to select a Debian mirror site near you.

• The script lib/judge/chroot-startstop.sh can be modified to suit your local environment. See
comments in that file for more information.

3.10 Submission methods

DOMjudge supports two submission methods: via the command line submit program and via the web
interface. From experience, both methods have users that prefer the one above the other.

The command line submit client sends submissions using the API interface internally. This requires the
libcURL and libjsonCPP library development files at compile time (the submit client is statically linked to
avoid a runtime dependency).

The database is the authoritative version for submission source files; file system storage is available as an
easy way to access the source files and as backup, but only when the web server has write permissions on
<domjudge_submitdir>. File system storage is ignored if these permissions are not set. The program
bin/restore_sources2db is available to recover the submission table in the database from these files.

3.11 Database installation

DOMjudge uses a MySQL or MariaDB database server for information storage. Where this document talks
about MySQL, it can be understood to also apply to MariaDB.

The database structure and privileges are included in MySQL dump files in the sql subdirectory. The
default database name is domjudge. This can be changed manually in the etc/dbpasswords.secret file:
the database name as specified in this file will be used when installing.

Installation of the database is done with bin/dj-setup-database. For this, you need an installed and
configured MySQL server and administrator access to it. Run

dj-setup-database genpass
dj-setup-database [-u <admin_user>] [-p <password>|-r] install

This first creates the DOMjudge database credentials file etc/dbpasswords.secret (optionally change the
random generated password, although it is not needed for normal operation). Then it creates the database
and user and inserts some default/example data into the domjudge database. The option -r will prompt
for a password for mysql; when no user is specified, the mysql client will try to read credentials from
$HOME/.my.cnf as usual. The command uninstall can be passed to dj-setup-database to remove the
DOMjudge database and users; this deletes all data!

The domjudge database contains a number of tables, some of which need to be manually filled with data
before the contest can be run. See the 4.1 (database section of Contest setup) for details.

CHAPTER 3. INSTALLATION AND CONFIGURATION 18

3.11.1 Fine tuning settings

For Apache, there are countless documents on how to maximise performance. Of particular importance is
to ensure that the MaxClients setting is high enough to receive the number of parallel requests you expect,
but not higher than your amount of RAM allows.

As for PHP, the use of an opcode cache like the Alternative PHP Cache (Debian package: php-apc) is
beneficial for performance. For uploading large testcases, see the A.6 (section about memory limits).

It may be desirable or even necessary to fine tune some MySQL default settings:

• max_connections: The default 100 is too low, because of the connection caching by Apache threads.
1000 is more appropriate.

• max_allowed_packet: The default of 16MB might be too low when using large testcases. This should
be changed both in the MySQL server and client configuration and be set to about twice the maximum
testcase size.

• Root password: MySQL does not have a password for the root user by default. It’s very desirable to
set one.

• When maximising performance is required, you can consider to use the Memory table storage engine
for the scorecache_public and scorecache_jury tables. They will be lost in case of a full crash, but
can be recalculated from the jury interface.

3.11.2 Setting up replication or backups

The MySQL server is the central place of information storage for DOMjudge. Think well about what to do
if the MySQL host fails or loses your data.

A very robust solution is to set up a replicating MySQL server on another host. This will be a hot copy of
all data up to the second, and can take over immediately in the event of failure. The MySQL manual has
more information about setting this up.

Alternatively, you can make regular backups of your data to another host, for example with mysqldump, or
use a RAID based system.

Replication can also be used to improve performance, by directing all select-queries to one or more replicated
slave servers, while updates will still be done to the master. This is not supported out of the box, and will
require making changes to the DOMjudge source.

3.12 Web server configuration

For the web interface, you need to have a web server (e.g. Apache) installed on the domserver and made
sure that PHP correctly works with it. Refer to the documentation of your web server and PHP for details.

You should turn PHP’s magic_quotes_* options off. We also recommend to turn off register_globals.

To configure the web server for DOMjudge, use the Apache configuration snippet from etc/apache.conf. It
contains examples for configuring the DOMjudge pages with an alias directive, or as a virtualhost, optionally
with SSL; it also contains PHP and security settings. Reload the web server for changes to take effect.

The judgehosts connect to DOMjudge via the DOMjudge API so need to be able to access at least this part
of the web interface.

CHAPTER 3. INSTALLATION AND CONFIGURATION 19

3.13 Logging & debugging

All DOMjudge daemons and web interface scripts support logging and debugging in a uniform manner via
functions in lib.error.*. There are three ways in which information is logged:

• Directly to stderr for daemons or to the web page for web interface scripts (the latter only on serious
issues).

• To a log file set by the variable LOGFILE, which is set in each program. Unsetting this variable disables
this method.

• To syslog. This can be configured via the SYSLOG configuration variable in etc/common-config.php.
This option gives the flexibility of syslog, such as remote logging. See the syslog(daemon) documenta-
tion for more information. Unsetting this variable disables this method.

Each script also defines a default threshold level for messages to be logged to stderr (VERBOSE: defaults
to LOG_INFO in daemons and LOG_ERR in the web interface) and for log file/syslog (LOGLEVEL: defaults to
LOG_DEBUG).

In case of problems, it is advisable to check the logs for clues. Extra debugging information can be obtained
by setting the config option DEBUG to a bitwise-or of the available DEBUG_* flags in etc/common-config.php,
to e.g. generate extra SQL query and timing information in the web interface.

3.14 Installation of a judgehost

A few extra steps might need to be taken to completely install and configure a judgehost.

For running solution programs under a non-privileged user, a user has to be added to the system(s) that
act as judgehost. This user does not need a home-directory or password, so the following command would
suffice to add a user ‘domjudge-run’ with minimal privileges.

On RedHat:

useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

On Debian:

useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run

For other systems check the specifics of your useradd command. This user must also be configured as the
user under which programs run via configure –enable-runuser=USER; the default is domjudge-run.

Runguard needs to be able to become root for certain operations like changing to the runuser and performing
a chroot. Also, the default chroot-startstop.sh script uses sudo to gain privileges for certain operations.
There’s a pregenerated /etc/sudoers.d/ snippet in etc/sudoers-domjudge that contains all required rules.
You can put the lines in the snippet at the end of /etc/sudoers, or, for modern sudo versions, place the
file in /etc/sudoers.d/. If you change the user you run the judgehost at, or the installation paths, be sure
to update the sudoers rules accordingly.

When the chroot setting is enabled (default), a static POSIX shell has to be available for copying it to the
chroot environment. For Linux i386, a static Dash shell is included, which works out of the box. For other
architectures or operating systems, a shell has to be added manually. Then simply point the lib/sh-static
symlink to this file. If you want to support languages that cannot be compiled to statically linked binaries,

CHAPTER 3. INSTALLATION AND CONFIGURATION 20

e.g. byte-compiled languages such as Java, or interpreted languages such as Python, then a complete chroot
environment must be built and configured. See the appendix on A.1 (setting up a chroot) for more details.

The judgehost connects to the domserver via a REST API. You need to create an account for the judgedae-
mons to use (this may be a shared account between all judgedaemons) with a difficult, random password
and the ’judgehost’ role. On each judgedaemon, create a file etc/restapi.secret containing the URL,
username and password whitespace-separated on one line, for example:

http://example.edu/domjudge/api/ judgehosts MzfJYWF5agSlUfmiGEy5mgkfqU

Upon its first connection to the domserver API the judgehost will be auto-registered and will be by default
enabled. If you wish to add a new judgehost but have it initially disabled, you can add it manually through
the DOMjudge web interface and set it to disabled before starting the judgedaemon.

3.15 Building and installing the submit client

The submit client can be built with make submitclient. There is no make target to install the submit
client, as its location will very much depend on the environment. You might e.g. want to copy it to all team
computers or make it available on a network filesystem. Note that if the team computers run a different
(version of the) operating system than the jury systems, then you need to build the submit client for that
OS.

The submit client needs to know the URL of the domserver. This can be passed as a command line option
or environment variable. The latter option makes for easier usage. A sample script submit_wrapper.sh is
included, which sets this variable. See that script for more details on how to set this up.

The submit client authenticates to the DOMjudge API via either the configured authentication scheme, or
can use the DOMjudge internal username and password combination for a given user account regardless of
authentication scheme. For example, when the IPADDRESS scheme is used, no additional configuration is
required because submmissions will come from the correct IP address of the team. When another scheme is
used, it may be necessary to place username and password combinations in the team’s account so the submit
client can use those. In this case these are always the DOMjudge internal password, so not e.g. LDAP
passwords when using that scheme. The credentials are placed in the file ˜/.netrc, with example content:

machine domserver.example.com login user0123 password Fba^2bHzz

See the netrc(4) manual page for more details. You may want to distribute those .netrc files in advance
over the team accounts. Make sure they are only readable for the user itself.

3.15.1 The submit client under Windows/Cygwin

The submit client can also be built under Windows when the Cygwin environment is installed. First the
Cygwin setup.exe <http://cygwin.com/setup.exe> program must be downloaded and installed with GCC,
curl-devel and maybe some more packages included.

When Cygwin is correctly installed with all necessary development tools, the submit binary can be created
by running configure followed by make submit.exe in the submit directory.

3.16 (Re)generating documentation and the team manual

There are three sets of documentation available under the doc directory in DOMjudge:

http://cygwin.com/setup.exe

CHAPTER 3. INSTALLATION AND CONFIGURATION 21

the admin-manual

for administrators of the system (this document),

the judge-manual

for judges, describing the jury web interface and giving some general information about this system,

the team-manual

for teams, explaining how to use the system and what restrictions there are.

The team manual is only available in PDF format and must be built from the LaTeX sources in doc/team after
configuration of the system. A prebuilt team manual is included, but note that it contains default/example
values for site-specific configuration settings such as the team web interface URL and judging settings such
as the memory limit. We strongly recommend rebuilding the team manual to include site-specific settings
and also to revise it to reflect your contest specific environment and rules.

Besides a standard LaTeX installation, the team manual requires the svn and expdlist packages. These are
available in TeX Live in the texlive-latex-extra package in any modern Linux distribution. Alternatively,
you can download and install them manually from their respective subdirectories in <http://mirror.ctan.
org/macros/latex/contrib> .

When the docs part of DOMjudge is installed and site-specific configuration set, the team manual can
be generated with the command genteammanual found under docs/team. The PDF document will be
placed in the current directory or a directory given as argument. The option -w WEBBASEURI can be
passed to set the base URI of the DOMjudge webinterface; it should end with a slash and defaults to
http://example.com/domjudge/. The following should do it on a Debian-like system:

sudo apt-get install make texlive-latex-extra texlive-latex-recommended texlive-lang-european
cd .../docs/team
./genteammanual [-w http://your.location.example.com/domjudge/] [targetdir]

The team manual is currently available in two languages: English and Dutch. We welcome any translations
to other languages.

The administrator’s and judge’s manuals are available in PDF and HTML format and prebuilt from SGML
sources. Rebuilding these is not normally necessary. To rebuild them on a Debian-like system, the following
commands should do it:

sudo apt-get install linuxdoc-tools make zip ghostscript groff texlive-latex-recommended
make -C doc/admin docs
make -C doc/judge docs

3.17 Optional features

3.17.1 Linux Control Groups (cgroups) in the judgedaemon

DOMjudge has experimental support for using Linux Control Groups or cgroups for process isolation in
the judgedaemon. Using cgroups gives more accurate measurement of actually allocated memory, which is
helpful with interpreters like Java that reserve but not actually use lots of memory. Also, the feature will
restrict network access so no separate measures are necessary, and allows to run multiple judgedaemons on
a multi-core machine.

The judgedaemon needs to run a recent Linux kernel (at least 3.2.0). The following steps configure cgroups
on Debian wheezy. Instructions for other distributions may be different (send us your feedback!).

http://mirror.ctan.org/macros/latex/contrib
http://mirror.ctan.org/macros/latex/contrib

CHAPTER 3. INSTALLATION AND CONFIGURATION 22

• Install the necessary packages: # apt-get install libcgroup-dev (or # yum install
libcgroup-devel on RedHat)

• Edit grub config to add memory cgroup and swap accounting to the boot options. Edit
/etc/default/grub and change the default commandline to GRUB_CMDLINE_LINUX_DEFAULT="quiet
cgroup_enable=memory swapaccount=1". Then run update-grub and reboot.

• Compile DOMjudge with cgroup support. Re-run ./configure and look for cgroup in the output.
Then rebuild the runguard with make build.

You have now configured the system to use cgroups, but you need to create the actual cgroups that DOMjudge
will use. For that, you can use the script under misc-tools/create_cgroups. Edit the script to match your
situation first. This script needs to be re-run after each boot (e.g., add it to the judegedaemon init script).

3.17.2 Multiple judgedaemons per machine

With cgroup support set up, as per the section above, you can run multiple judgedaemons on one multi-cpu
or multi-core machine, dedicating one cpu core to each judgedaemon.

To that end, set the cpuset.cpus variable in etc/cgroup-domjudge.conf snippet correctly, e.g. to use all
cores on a quad-core machine set it to 0-3, and add extra unprivileged users to the system, i.e. add users
domjudge-run-<X> (where X runs through 0,1,2,3) with useradd as described in section 3.14 (installation
of a judgehost). Finally, start each of the judgedaemons with:

$ judgedaemon -n <X>

3.17.3 Encrypted communications (HTTPS)

DOMjudge can be configured to run on HTTPS, so teams and judgedaemons communicate with the dom-
server securely over encrypted SSL/TLS connections. Setting up SSL for Apache is documented in the
Apache manual and in many tutorials around the web.

The judgedaemons must recognise the CA you’re using, otherwise they will refuse to connect over HTTPS. If
your judgedaemon gives an error message about an untrusted certificate, put your domserver’s certificate in
/etc/ssl/certs/yourname.crt of each judgehost (and on the team machines when using the commandline
submit client) and run:

c_rehash

When loading teams from the ICPC registration system through the import feature in DOMjudge, the
certificate from icpc.baylor.edu must similarily be acceped by your local installation or if not, added via the
procedure above.

3.17.4 NTP time synchronisation

We advise to install an NTP-daemon (Network Time Protocol) to make sure the time between domserver
and team computers is in sync.

http://httpd.apache.org/docs/2.4/ssl/

CHAPTER 3. INSTALLATION AND CONFIGURATION 23

3.17.5 Printing

It is recommended to configure the local desktop printing of team workstations whereever possible: this has
the most simple interface and allows teams to print from within their editor.

If this is not feasible, DOMjudge includes support for printing via the DOMjudge web interface: the DOM-
judge server then needs to be able to deliver the uploaded files to the printer. It can be enabled via the
enable_printing configuration option in the administrator interface. The exact command used to send the
files to a printer can be changed the function send_print() in lib/www/printing.php.

3.17.6 Judging consistency

The following issues can be considered to improve consistency in judging.

• Disable CPU frequency scaling and Intel "Turbo Boost" to prevent fluctuations in CPU power.

• Disable address-space randomization to make programs with memory addressing bugs give more re-
producible results:

echo 0 > /proc/sys/kernel/randomize_va_space

3.18 Upgrading

There is some support to upgrade DOMjudge to newer versions. Note that this functionality is not extensively
tested, so when you plan to upgrade, you are strongly advised to backup the DOMjudge database and other
data before continuing . We also advise to check the ChangeLog file for important changes.

Upgrading the filesystem installation is probably best done by installing the new version of DOMjudge in a
separate place and transferring the configuration settings from the old version.

There are SQL upgrade scripts to transform the database including its data to the layout of a newer version.
The scripts can be found under sql/upgrade and each script applies changes between two consecutive
DOMjudge versions. At the beginning of each script, a check is performed which will let MySQL bail out
with an error if it should not be applied anymore. Note that the scripts must be applied in order (sorted by
release). These scripts can be applied by running dj-setup-database upgrade.

4 Setting up a contest

After installation is successful, you want to run your contest! Configuring DOMjudge to run a contest (or a
number of them, in sequence) involves the following steps:

• Configure the contest data;

• Set up authentication for teams;

• Supply in- and output testdata;

• Check that everything works.

4.1 Configure the contest data

DOMjudge stores and retrieves most of its data from the MySQL database. Some information must be filled
in beforehand, other tables will be populated by DOMjudge.

You can use the jury web interface to add, edit and delete most types of data described below. It’s advised to
keep a version of phpMyAdmin handy in case of emergencies, or for general database operations like import
and export.

This section describes the meaning of each table and what you need to put into it. Tables marked with an
‘x’ are the ones you have to configure with contest data before running a contest (via the jury web interface
or e.g. with phpMyAdmin), the other tables are used automatically by the software:

auditlog Log of every state-changing event.
balloon Balloons to be handed out.
clarification Clarification requests/replies are stored here.

x configuration Runtime configuration settings.
x contest Contest definitions with start/end time.
x executable Executable compile/run/compare scripts.

event Log of events during contests.
judgehost Computers (hostnames) that function as judgehosts.
judging Judgings of submissions.
judging_run Result of one testcase within a judging.

x language Definition of allowed submission languages.
x problem Definition of problems (name, corresponding contest, etc.).

role Possible user roles.
scorecache_jury Cache of the scoreboards for public/teams and for the jury
scorecache_public separately, because of possibility of score freezing.
submission Submission metadata of solutions to problems.
submission_file Submitted code files.

x team Definition of teams.
x team_affiliation Definition of institutions a team can be affiliated with.
x team_category Different category groups teams can be put in.

team_unread Records which clarifications are read by which team.
x testcase Definition of testdata for each problem.
x user Users that will able to access the system.
x userrole Mapping of users to their roles.

24

CHAPTER 4. SETTING UP A CONTEST 25

Now follows a longer description (including fields) per table that has to be filled manually. As a general
remark: almost all tables have an identifier field. Most of these are numeric and automatically increasing;
these do not need to be specified. The tables executable and language have text strings as identifier fields.
These need to be manually specified and only alpha-numeric, dash and underscore characters are valid, i.e.
a-z, A-Z, 0-9, -, _.

configuration

This table contains configuration settings. These entries are simply stored as name, value pairs, where
the values are JSON encoded, type contains the allowed data type, and description documents the
configuration setting.

contest

The contests that the software will run. E.g. a test session and the live contest.

cid is the reference ID and contestname is a descriptive name used in the interface.

activatetime, starttime and endtime are required fields and specify when this contest is active
and open for submissions. Optional freezetime and unfreezetime control scoreboard freezing. For
a detailed treating of these, see section 4.2 (Contest milestones). All contest times can be specified
relative to starttime, except of course starttime itself. The input given in the jury interface (either
relative or absolute) is stored in the *time_string fields, while a calculated absolute version is stored
in the fields without the _string suffix.

The enabled field can be unset to allow for easier editing of contest times, as disabled contests are not
checked to overlap with other contests. A disabled contest will also not become active.

executable

This table stores zip-bundles of executable scripts that can be used as compile, run, and compare
scripts.

language

Programming languages in which to accept and judge submissions. langid is a string of maximum
length 8, which references the language; it is used internally as extension for source files. This reference
is also used to call the correct compile script (lib/judge/compile_c.sh, etc.), so when adding a new
language, check that these match. Alternative extensions that should be recognized are JSON encoded
in extensions.

name is the displayed name of the language; allow_submit determines whether teams can submit using
this language; allow_judge determines whether judgehosts will judge submissions for this problem.
This can for example be set to no to temporarily hold judging when a problem occurs with the judging
of a specific language; after resolution of the problem this can be set to yes again.

time_factor is the relative factor by which the timelimit is multiplied for solutions in this language.

problem

This table contains the problem definitions. probid is the reference ID, cid is the contest ID this
problem is (only) defined for: a problem cannot be used in multiple contests. name is the full name
(description) of the problem.

allow_submit determines whether teams can submit solutions for this problem. Non-submittable
problems are also not displayed on the scoreboard. This can be used to define spare problems, which
can then be added to the contest quickly; allow_judge determines whether judgehosts will judge
submissions for this problem. See also the explanation for language.

timelimit is the timelimit in seconds within which solutions for this problem have to run (taking into
account time_factor per language).

CHAPTER 4. SETTING UP A CONTEST 26

special_run if not empty defines a custom run program run_<special_run> to run compiled sub-
missions for this problem and special_compare if not empty defines a custom compare program
compare_<special_compare> to compare output for this problem.

The color tag can be filled with a CSS colour specification to associate with this problem; see also
section 6.2.1 (Scoreboard: colours).

In problemtext a PDF, HTML or plain text document can be placed which allows team, public and
jury to download the problem statement. Note that no additional filtering takes place, so HTML (and
PDF to some extent) should be from a trusted source to prevent cross site scripting or other attacks.
The file type is stored in problemtext_type.

team

Table of teams: login is a short name for the team (which is referenced to in other tables as teamid)
and name the displayed name of the team. categoryid is the ID of the category the team is in; affilid
is the affiliation ID of the team.

When enabled is set to 0, the team immediately disappears from the scoreboards and cannot use the
team web interface anymore, even when already logged in. One use case could be to disqualify a team
on the spot.

members are the names of the team members, separated by newlines and room is the location or room
of the team, both for display only; comments can be filled with arbitrary useful information and is
only visible to the jury. The timestamp teampage_first_visited and the hostname field indicate
when/whether/from where a team visited its team web interface.

team_affiliation

affilid is the reference ID and name the name of the institution. country should be the 3 character
ISO 3166-1 alpha-3 abbreviation of the country and comments is a free form field that is displayed in
the jury interface.

A country flag can be displayed on the scoreboard. For this to work, the country field must match a
(flag) picture in www/images/countries/<country>.png. All country flags are present there, named
with their 3-character ISO codes. See also www/images/countries/README.

team_category

categoryid is the reference ID and name is a string: the name of the category. sortorder is the order
at which this group must be sorted in the scoreboard, where a higher number sorts lower and equal
sort depending on score.

The color is again a CSS colour specification used to discern different categories easily. See also section
6.2.1 (Scoreboard: colours).

The visible flag determines whether teams in this category are displayed on the public/team score-
board. This feature can be used to remove teams from the public scoreboard by assigning them to a
separate, invisible category.

testcase

The testcase table contains testdata for each problem; testcaseid is a unique identifier, input and
output contain the testcase input/output and md5sum_input, md5sum_output their respective md5
hashes to check for up-to-date-ness of cached versions by the judgehosts. probid is the corresponding
problem and rank determines the order of the testcases for one problem. description is an optional
description for this testcase. See also 4.4 (providing testdata).

user

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3#Officially_assigned_code_elements

CHAPTER 4. SETTING UP A CONTEST 27

This table has the users that the system knows about with their login credentials. Each user may have
one or more roles, like being part of a team, being a jury member or administrator. There are also
functional accounts, like for judgedaemons.

4.2 Contest milestones

The contest table specifies timestamps for each contest that mark specific milestones in the course of the
contest.

The triplet activatetime, starttime and endtime define when the contest runs and are required fields (acti-
vatetime and starttime may be equal).

activatetime is the moment when a contest first becomes visible to the public and teams (potentially replacing
a previous contest that was displayed before). Nothing can be submitted yet and the problem set is not
revealed. Clarifications can be viewed and sent.

At starttime, the scoreboard is displayed and submissions are accepted. At endtime the contest stops. New
incoming submissions will still be processed and judged, but the result will not be shown anymore to teams;
they instead receive the verdict‘too-late’. Unjudged submissions received before endtime will still be judged
normally.

freezetime and unfreezetime control scoreboard freezing. freezetime is the time after which the public and
team scoreboard are not updated anymore (frozen). This is meant to make the last stages of the contest
more thrilling, because no-one knows who has won. Leaving them empty disables this feature. When using
this feature, unfreezetime can be set to automatically ‘unfreeze’ the scoreboard at that time. For a more
elaborate description, see also section 6.2.3 (Scoreboard: freezing and defrosting).

The scoreboard, results and clarifications will remain to be displayed to team and public after a contest,
until an activatetime of a later contest passes.

All events happen at the first moment of the defined time. That is: for a contest with starttime "12:00:00"
and endtime "17:00:00", the first submission will be accepted at 12:00:00 and the last one at 16:59:59.

The following ordering must always hold: activatetime <= starttime < (freezetime <=) endtime (<=
unfreezetime). No two contests may have overlap: there’s always at most one active contest at any time.

4.3 User authentication

The authentication system lets domserver know which user it is dealing with and which role(s) the user has.
This system is modular, allowing flexible addition of new methods, if required. The following methods are
available by default for authentication.

4.3.1 PHP session with passwords (default)

Each user receives a password and PHP’s session management is used to keep track of which user is logged
in. This method is easiest to setup. It does require the administrator to generate users and passwords for
all teams (this can be done in the jury interface) and distribute those, though. Also, each team has to login
each time they (re)start their browser. The password is stored in a salted MD5 hash in the password field
in database (user table).

CHAPTER 4. SETTING UP A CONTEST 28

4.3.2 IP-address based

The IP-address of a team’s workstation is used as the primary means of authentication. The system assumes
that someone coming from a specific IP is the user with that IP listed in the user table. When a team
browses to the web interface, this is checked and the appropriate team page is presented.

This method has the advantage that teams do not have to login. A requirement for this method is that each
team computer has a separate IP-address from the view of the domserver, though, so this is most suitable
for onsite contests and might not work with online contests if multiple teams are located behind a router,
for example. Furthermore, with this method the command line submitclient can be used next to the web
interface submit.

There are two possible ways of configuring team IP-addresses.

Supply it beforehand

Before the contest starts, when entering teams into the database, add the IP that each team will have to
that user’s entry in the ip_address field. When the teams arrive, everything will work directly and without
further configuration (except when teams switch workplaces). If possible, this is the recommended modus
operandi, because it’s the least hassle just before and during the contest.

Use one-time passwords

Supply the teams with a one time username and password with which to authenticate. Beforehand, generate
passwords for each team in the jury interface. When the test session (or contest) starts and a team connects
to the web interface and have an unknown IP, they will be prompted for username and password. Once
supplied, the IP is stored and the assword is removed and not needed anymore the next time.

This is also a secure option, but requires a bit more hassle from the teams, and maybe from the organisers
who have to distribute pieces of paper.

Note: the web interface will only allow a team to authenticate themselves once. If an IP is set, a next
authentication will be refused (to avoid trouble with lingering passwords). In order to fully re-authenticate
a team, the IP address needs to be unset. You might also want to generate a new password for this specific
user. Furthermore, a team must explicitly connect to the team interface URL, because with an unknown IP,
the root DOMjudge website will redirect to the public interface.

4.3.3 Using an external LDAP server

This method can be useful when you want to integrate DOMjudge into a larger system, or already have
credentials on an LDAP server available. The username field in the database must contain the LDAP
username of the DOMjudge user. Furthermore, in etc/domserver-config.php the LDAP_* configuration
settings must be adapted to your setup. Note that multiple (backup) servers can be specified: they are
queried in order to try to successfully authenticate. After successful authentication against the LDAP
server(s), PHP sessions are used to track login into DOMjudge.

4.3.4 Fixed team authentication

This method automatically authenticates each connection to the web interface as a fixed, configurable user.
This can be useful for testing or demonstration purposes, but probably not for real use scenarios.

CHAPTER 4. SETTING UP A CONTEST 29

4.3.5 Adding new authentication methods

The authentication system is modular and adding new authentication methods is fairly easy. The authenti-
cation is handled in the file lib/www/auth.php. Adding a new method amounts to editing the functions in
that file to handle your specific case.

4.4 Providing testdata

Testdata is used to judge the problems: when a submission run is given the input testdata, the resulting
output is compared to the reference output data. If they match exactly, the problem is judged to be
correct. For problems with a special compare script, testdata should still be provided in the same way, but
the correctness depends on the output of the custom compare script. Please check the documentation in
judge/compare_wrapper when using this feature.

The database has a separate table named testcase, which can be manipulated from the web interface. Under
a problem, click on the testcase link. There the files can be uploaded. The judgehosts cache a copy based
on MD5 sum, so if you need to make changes later, re-upload the data in the web interface and it will
automatically be picked up.

Testdata can also be imported into the system from a zip-bundle on each problem webpage. Each pair of
files <path-to-file>/<filename>.in and corresponding *.out found in the zip-bundle will be added as
testdata. Furthermore, when the file domjudge-problem.ini exists, then problem properties are read from
that file in INI-syntax. All keys from the problem table are supported, so an example contents could be:

probid = hello

name = Hello world!
allow_submit=false
color=blue

Testcases will be added to those already present and imported properties will overwrite those in the database.
A completely new problem can also be imported from a zip-bundle on the problems overview webpage; in
that case, note that if the file domjudge-problem.ini is not present, a default value is chosen for the
unmodifiable primary key probid (as well as for the other keys). It is possible to upload multiple zip files
in one go, each of which will be added as a separate problem.

4.5 Start the daemons

Once everything is configured, you can start the daemons. They all run as a normal user on the system.
The needed root privileges are gained through sudo only when necessary.

• One or more judgedaemons, one on each judgehost;

• Optionally the balloon notification daemon.

4.6 Check that everything works

If the daemons have started without any problems, you’ve come a long way! Now to check that you’re ready
for a contest.

CHAPTER 4. SETTING UP A CONTEST 30

First, go to the jury interface: http://www.your-domjudge-location/jury. Look under all the menu items
to see whether the displayed data looks sane. Use the config-checker under ‘Admin Functions’ for some sanity
checks on your configuration.

Go to a team workstation and see if you can access the team page and if you can submit solutions.

Next, it is time to submit some test solutions. If you have the default Hello World problem enabled, you can
submit some of the example sources from under the doc/examples directory. They should give ‘CORRECT’.

You can also try some (or all) of the sources under tests. Use make check to submit a variety of tests; this
should work when the submit client is available and the default example problems are in the active contest.
There’s also make stress-test, but be warned that these tests might crash a judgedaemon. The results
can be checked in the web interface; each source file specifies the expected outcome with some explanations.
For convenience, there is a link judging verifier in the admin web interface; this will automatically check
whether submitted sources from the tests directory were judged as expected. Note that a few sources have
multiple possible outcomes: these must be verified manually.

When all this worked, you’re quite ready for a contest. Or at least, the practice session of a contest.

4.7 Testing jury solutions

Before running a real contest, you and/or the jury will want to test the jury’s reference solutions on the
system.

There is no special feature for testing their solutions under DOMjudge. The simplest approach is to submit
these solutions as a special team. This method requires a few steps and some carefulness to prevent a
possible information leak of the problemset. It is assumed that you have completely configured the system
and contest and that all testdata is provided. To submit the jury solutions the following steps have to be
taken:

• change the contest time to make the contest currently active;

• setup a special team at a local computer;

• submit the jury solutions as that team;

• check that all solutions are judged as expected in the jury interface;

• revert the contest to the original times.

Note that while the contest time is changed to the current time, anyone might be able to access the public
or team web interface: there’s not too much there, but on the scoreboard the number of problems and their
titles can be read. To prevent this information leak, one could disconnect the DOMjudge server, judgehosts
and the computer used for submitting from the rest of the network.

Furthermore, you should make sure that the team you submit the solutions as, is in a category which is set
to invisible, so that it doesn’t show up on the public and team scoreboard. The sample team "DOMjudge"
could be used, as it is in the "Organisation" category, which is not visible by default.

5 Team Workstations

Here’s a quick checklist for configuring the team workstations. Of course, when hosting many teams, it
makes sense to generate a preconfigured account that has these features and can be distributed over the
workstations.

1. The central tool teams use to interact with DOMjudge is the web browser.

• If possible, set the Home Page to your.domjudge.location/team/

• Go to the team page and check if this team is correctly identified.

• If using https and a self signed certificate, add this certificate to the browser certificate list to
prevent annoying dialogs.

2. Make sure compilers for the supported languages are installed and working.

3. Provide teams with the command line submit client and check that it works.

• If needed, set environment variables to configure the client.

• Optionally distribute .netrc files with team credentials.

• If using https and a self signed certificate, add this certificate to the local trust store (see 3.17.3
(HTTPS setup)).

4. Make the sample in- and output data from the problem set available.

5. Add your SSH key to their authorized_keys file, so you can always access their account for wiping and
emergencies.

6. Check that internet access is blocked.

31

6 Web interface

The web interface is the main point of interaction with the system. Here you can view submissions coming
in, control judging, view the standings and edit data.

6.1 Jury and Administrator view

The jury interface has two possible views: one for jury members, and one for DOMjudge administrators.
The second view is the same as the jury view, but with more features added. Which to show is decided by
using the HTTP authentication login used to access the web interface; you can list which HTTP users are
admin with the variable DOMJUDGE_ADMINS in etc/domserver-config.php.

This separation is handy as a matter of security (jury members cannot (accidentally) modify things that
shouldn’t be) and clarity (jury members are not confused / distracted by options they don’t need).

Options offered to administrators only:

• Adding and editing any contest data

• Managing team passwords

• The config checker

• Refreshing the scoreboard & hostname caches

• Rejudge ’correct’ submissions

• Restart ’pending’ judgings

Furthermore, some quick link menu items might differ according to usefulness for jury or admins.

A note on rejudging: it is policy within the DOMjudge system that a correct solution cannot be reverted
to incorrect. Therefore, administrator rights are required to rejudge correct or pending (hence, possibly
correct) submissions. For some more details on rejudging, see the jury manual.

6.2 The scoreboard

The scoreboard is the canonical overview for anyone interested in the contest, be it jury, teams or the general
public. It deserves to get a section of its own.

6.2.1 Colours and sorting

Each problem can be associated with a specific colour, e.g. the colour of the corresponding balloon that is
handed out. DOMjudge can display this colour on the scoreboard, if you fill in the ‘color’ attribute in the
‘problem’ table; set it to a valid CSS colour value (e.g. ‘green’ or ‘#ff0000’, although a name is preferred for
displaying colour names).

It’s possible to have different categories of teams participating, this is controlled through the ‘team_category’
table. Each category has its own background colour in the scoreboard. This colour can be set with the ‘color’
attribute to a valid CSS colour value.

32

http://www.w3.org/TR/REC-CSS1#color-units

CHAPTER 6. WEB INTERFACE 33

If you wish, you can also define a sortorder in the category table. This is the first field that the scoreboard is
sorted on. If you want regular teams to be sorted first, but after them you want to sort both spectator- and
business teams equally, you define ‘0’ for the regular category and ‘1’ for the other categories. To completely
remove a category from the public (but not the jury) scoreboard, the category visible flag can be set to ‘0’.

6.2.2 Starting and ending

The displayed scoreboard will always be that of the most recently started contest. The scoreboard is never
displayed for a contest that still has to start. In other words, the scores will become visible on the first
second of a contest start time.

When the contest ends, the scores will remain to be displayed, until a next contest starts.

6.2.3 Freezing and defrosting

DOMjudge has the option to ‘freeze’ the public- and team scoreboards at some point during the contest.
This means that scores are no longer updated and remain to be displayed as they were at the time of the
freeze. This is often done to keep the last hour interesting for all. The scoreboard freeze time can be set
with the ‘freezetime’ attribute in the contest table.

The scoreboard freezing works by looking at the time a submission is made. Therefore it’s possible that
submissions from (just) before the freezetime but judged after it can still cause updates to the public
scoreboard. A rejudging during the freeze may also cause such updates.

If you do not set any freeze time, this option does nothing. If you set it, the public and team scoreboards will
not be updated anymore once this time has arrived. The jury will however still see the actual scoreboard.

Once the contest is over, the scores are not directly ‘unfrozen’. This is done to keep them secret until e.g.
the prize ceremony. You can release the final scores to team and public interfaces when the time is right.
You can do this either by setting a predefined ‘unfreezetime’ in the contest table, or you push the ‘unfreeze
now’ button in the jury web interface, under contests.

6.2.4 Clickability

Almost every cell is clickable in the jury interface and gives detailed information relevant to that cell. This
is (of course) not available in the team and public scoreboards, except that in the team and public interface
the team name cell links to a page with some more information and optionally a team picture.

6.2.5 Caching

The scoreboard is not recalculated on every page load, but rather cached in the database. It should be safe
for repeated reloads from many clients. In exceptional situations (should never occur in normal operation,
e.g. a bug in DOMjudge), the cache may become inaccurate. The jury administrator interface contains an
option to recalculate a fresh version of the entire scoreboard. You should use this option only when actually
necessary, since it puts quite a load on the database.

6.2.6 Exporting to an external website

In many cases you might want to create a copy of the scoreboard for external viewing from the internet. The
command bin/static_scoreboard is provided just for that. It writes to stdout a version of the scoreboard

CHAPTER 6. WEB INTERFACE 34

with refresh meta-tags and links to team pages removed. This command can for example be run every
minute and the output be placed as static content on a publicly reachable webserver.

6.3 Balloons

In many contests balloons are handed out to teams that solve a particular problem. DOMjudge can help
in this process: both a web interface and a notification daemon are available to notify that a new balloon
needs to be handed out. Note that only one should be used at a time.

The web based tool is reachable from the main page in the jury interface, where each balloon has to be
checked off by the person handing it out.

For the daemon, set the BALLOON_CMD in etc/domserver-config.php to define how notifications are
sent. Examples are to mail to a specific mailbox or to send prints to a printer. When configured, start
bin/balloons and notification will start.

Notifications will stop as soon as the scoreboard is frozen. Enable the show_balloons_postfreeze to keep
issuing balloon notifications after the freeze.

7 Security

This judging system was developed with security as one of the main goals in mind. To implement this
rigorously in various aspects (restricting team access to others and the internet, restricting access to the
submitted programs on the domjudge systems, etc...) requires root privileges to different parts of the whole
contest environment. Also, security measures might depend on the environment. Therefore we have decided
not to implement security measures which are not directly related to the judging system itself. We do have
some suggestions on how you can setup external security.

7.1 Considerations

Security considerations for a programming contest are a bit different from those in normal conditions: nor-
mally users only have to be protected from deliberately harming each other. During a contest we also have
to restrict users from cooperatively communicating, accessing restricted resources (like the internet) and
restrict user programs running on judgehosts.

We expect that chances are small that people are trying to cheat during a programming contest: you have
to hack the system and make use of that within very limited time. And you have to not get caught and
disqualified afterwards. Therefore passive security measures of warning people of the consequences and only
check (or probe) things will probably be enough.

However we wanted the system to be as secure as possible within reason. Furthermore this software is open
source, so users can try to find weak spots before the contest.

7.2 Internal security

Internal security of the system relies on users not being able to get to any vital data (jury input/output and
users’ solutions). Data is stored in two places: in files on the DOMjudge system account and in the SQL
database.

Files should be protected by restricting permission to the relevant directories.

Note: the database password is stored in etc/dbpasswords.secret. This file has to be non-readable to
teams, but has to be readable to the web server to let the jury web interface work. A solution is to make it
readable to a special group the web server runs as. This is done when using the default configuration and
installation method and when make install-{domserver,judgehost} is run as root. The webserver group
can be set with configure –with-webserver-group=GROUP; by default it is tried to be determined from
groups available on the system, e.g. www-data or apache.

Judgehosts and the domserver communicate with each other over HTTP. Also all parties accessing the
domserver web interface obvioulsly use this protocol. We advise to setup HTTPS so interactions between
domserver, judgehosts and teams are all protected. If you need to use a self-signed certificate, you can
consider to install it on the team workstations beforehand to minimize hassle.

When using IP address authentication, one has to be careful that teams are not able to spoof their IP (for
which they normally need root/administrator privileges), as they would then be able to view other teams’
submission info (not their code) and clarifications and submit as that team. Note: This means that care has
to be taken e.g. that teams cannot simply login onto one another’s computer and spoof their identity.

Problem texts can be uploaded to DOMjudge. No filtering is performed there, so make sure they are from
trusted sources to, in the case of HTML, prevent cross site scripting code to be injected.

35

CHAPTER 7. SECURITY 36

7.3 Root privileges

A difficult issue is the securing of submitted programs run by the jury. We do not have any control over
these sources and do not want to rely on checking them manually or filtering on things like system calls
(which can be obscured and are different per language).

Therefore we decided to tackle this issue by running these programs in a environment as restrictive as possible.
This is done by setting up a minimal chroot environment. For this, root privileges on the judgehosts and
statically compiled programs are needed. By also limiting all kinds of system resources (memory, processes,
time, unprivileged user) we protect the system from programs which try to hack or could crash the system.
However, a chroot environment does not restrict network access, so there lies a possible security risk that
has to be handled separately.

7.4 File system privileges

Of course you must make sure that the file system privileges are set such that there’s no unauthorised
access to sensitive data, like submitted solutions or passwords. This is quite system dependent. At least
<judgehost_judgedir> should not be readable by other users than DOMjudge.

7.4.1 Permissions for the web server

The default installation sets permissions correctly for the web server user (commonly www-data or apache).
The following information is for those who want to verify the setup or make modifications to the settings.

Care should be taken with the etc dir: the domserver-{config,static}.php and dbpasswords.secret
files should all be readable, but dbpasswords.secret should not be readable by anyone else. This can be
done for example by setting the etc directory to owner:group <DOMjudge account>:<Web server group>
and permissions drwxr-x–-, denying users other than yourself and the web server group access to the
configuration and password files.

If you want the web server to also store incoming submission sources on the file system (next to the database),
then <domserver_submitdir> must be writable for the web server, see also 3.10 (submission methods).

You should take care not to serve any files over the web that are not under the DOMjudge ’www/’ directory,
because they might contain sensitive data (e.g. those under etc/). DOMjudge comes with .htaccess files
that try to prevent this, but double-check that it’s not accessible.

7.5 External security

The following security issues are not handled by DOMjudge, but left to the administrator to set up.

Network traffic between team computers, domserver and the internet should be limited to what is allowed.
Possible ways of enforcing this might be: monitor traffic, modify firewall rules on team computers or (what
we implemented with great satisfaction) put all team computers behind a firewalling router.

Solutions are run within a restricted (chroot) environment on the judgehosts. This however does not restrict
network access, so a team could try to send in a solution that tries to send input testdata back to them,
access the internet, etc... A solution to this problem is to disallow all network traffic for the test user on the
judgehosts. On Linux, this can be accomplished by modifying the iptables, adding a rule like:

iptables -I OUTPUT -m owner --uid-owner <testuser_uid> -j REJECT

CHAPTER 7. SECURITY 37

Note that when using cgroups, network access is restricted by default and the above is not necessary.

A Common problems and their
solutions

A.1 Java compilers and the chroot

Java is difficult to deal with in an automatic way. It is probably most preferable to use Oracle (previously
Sun) Java, because that’s the version contestants will be used to. The GNU Compiler for Java (GCJ) is
easier to deal with but may lack some features.

With the default configuration, submitted programs are run within a minimal chroot environment. For this
the programs have to be statically linked, because they do not have access to shared libraries.

For most languages compilers support this, but for Java, this is a bit problematic. The Oracle Java compiler
‘javac’ is not a real compiler: a bytecode interpreter ‘java’ is needed to run the binaries and thus this cannot
simply run in a chroot environment.

There are some options to support Java as a language:

1. One can build a bigger chroot environment which contains all necessary ingredients to let Java work
within it. DOMjudge supports this with some manual setup.

First of all, a chroot tree with Java support must be created. The script bin/dj_make_chroot creates
one from Debian GNU/Linux sources; run that script without arguments for basic usage information.
Next, edit the script lib/judge/chroot-startstop.sh and adapt it to work with your local system
and uncomment the script in etc/judgehost-config.php.

2. As an alternative the gcj compiler from GNU can be used instead of Oracle’s version. This one
generates true machine code and can link statically. However a few function calls cannot be linked
statically (see ‘GCJ compiler warnings’ in this FAQ). Secondly, the static library libgcj.a doesn’t
seem to be included in all GNU/Linux distributions: at least not in RedHat Enterprise Linux 4.

3. One can disable the chroot environment in etc/judgehost-config.php by disabling USE_CHROOT.
Disabling the chroot environment removes this layer of security against submissions that attempt to
cheat, but it is a simple solution to getting Java to work, for demo or testing purposes. No guarantees
about system security can be made when running a contest with chroot disabled.

A.2 The Java virtual machine (jvm) and memory limits

DOMjudge imposes memory limits on submitted solutions. These limits are imposed before the compiled
submissions are started. On the other hand, the Java virtual machine is started via a compile-time generated
script which is run as a wrapper around the program. This means that the memory limits imposed by
DOMjudge are for the jvm and the running program within it. As the jvm uses approximately 300MB, this
reduces the limit by this significant amount. See judge/compile_java_javac.sh for the implementation
details.

If you see error messages of the form

Error occurred during initialization of VM
java.lang.OutOfMemoryError: unable to create new native thread

38

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 39

or

Error occurred during initialization of VM
Could not reserve enough space for object heap

Then the problem is probably that the jvm needs more memory than what is reserved by the Java compile
script. You should try to increase the MEMRESERVED variable in judge/compile_java.sh and check that
the configuration variable memory limit is set larger than MEMRESERVED. If that does not help, you should
try to increase the configuration variable process limit (since the JVM uses a lot of processes for garbage
collection).

A.3 Java class naming

Java requires a specific naming of the main class. When declaring the main class public, the filename must
match the class name. Therefore one should not declare the main class public; from experience however,
many teams do so. Secondly, the Java compiler generates a bytecode file depending on the class name. There
are two ways to handle this.

The simplest Java compile script compile_java_javac.sh requires the main class to be named Main with
method

public static void main(String args[])

The alternative (and default) is to use the script compile_java_javac_detect.sh, which automatically
detects the main class and even corrects the source filename when it is declared public.

When using the GNU gcj compiler, the same holds and two similar scripts compile_java_gcj.sh and
compile_java_gcj_detect.sh are available.

A.4 GCJ compiler warnings

When using the GNU GCJ compiler for compiling Java sources, it can give a whole lot of warning messages
of the form

/usr/lib/gcc-lib/i386-linux/3.2.3/libgcj.a(gc_dlopen.o)(.text+0xbc):
In function ‘GC_dlopen’: Using ’dlopen’ in statically linked
applications requires at runtime the shared libraries from the glibc
version used for linking

These are generated because you are trying to compile statically linked sources, but some functions can not
be static, e.g. the ‘dlopen’ function above. These are warnings and can be safely ignored, because under
normal programming contest conditions people are not allowed to use these functions anyway (and they are
not accessible within the chroot-ed environment the program is run in).

To filter these warnings, take a look at judge/compile_java_gcjmod.sh and replace or symlink
judge/compile_java.sh by/to this file.

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 40

A.5 C#/mono support

Using the mono compiler and runtime for C# gives rise to similar problems as with Java. Although the C#
language has been added to DOMjudge, there’s no support yet to run it within a chroot environment. So in
that case, USE_CHROOT must be disabled.

A.6 Memory limit errors in the web interface

When uploading large testdata files, one can run into an error in the jury web interface of the form:

Fatal error: Allowed memory size of XX bytes exhausted (tried to
allocate YY bytes) in /home/domjudge/system/lib/lib.database.php
on line 154

This means that the PHP engine has run out of memory. The solution is to raise the memory limits for PHP.
This can be done by either editing etc/apache.conf and raising the memory_limit, upload_max_filesize
and post_max_size values to well above the size of your largest testcase. You can change these parameters
under the jury directory or by directly editing the global Apache or php.ini configuration. Note also that
max_file_uploads must be larger than the maximum number of testcases per problem to be able to upload
and edit these in the web interface.

The optional PHP Suhosin module may also impose additional limits; check your error logging to see if these
are triggered. You may also need to raise MySQL’s max_allowed_packet parameter in /etc/mysql/my.cnf
on both server and client.

A.7 Compiler errors: ‘runguard: root privileges not dropped’

Compiling failed with exitcode 255, compiler output:
/home/domjudge/system/bin/runguard: root privileges not dropped

When the above error occurs on submitting any source, this indicates that you are running the judgedaemon
as root user. You should not run any part of DOMjudge as root; the parts that require it will gain root by
themselves through sudo. Either run it as yourself or, probably better, create dedicated a user domjudge
under which to install and run everything.

Also do not confuse this with the domjudge-run user: this is a special user to run submissions as and should
also not be used to run normal DOMjudge processes; this user is only for internal use.

B Multi-site contests

This manual assumed you are running a singe-site contest; that is, the teams are located closely together,
probably in a single physical location. In a multi-site or distributed contest, teams from several remote
locations use the same DOMjudge installation. An example is a national contest where teams can participate
at their local institution.

DOMjudge supports such a setup on the condition that a central installation of DOMjudge is used to which
the teams connect over the internet. It is here where all submission processing and judging takes place.
Because DOMjudge uses a web interface for all interactions, teams and judges will interface with the system
just as if it were local. Still, there are some specific considerations for a multi-site contest.

Network: there must be a relatively reliable network connection between the locations and the central
DOMjudge installation, because teams cannot submit or query the scoreboard if the network is down.
Because of travelling an unsecured network, you may want to consider HTTPS for encrypting the traffic. If
you want to limit internet access, it must be done in such a way that the remote DOMjudge installation can
still be reached.

Team authentication: the IP-based authentication will still work as long as each team workstation has a
different public IP address. If some teams are behind a NAT-router and thus all present themselves to
DOMjudge with the same IP-address, another authentication scheme must be used (e.g. PHP sessions).

Judges: if the people reviewing the submissions will be located remotely as well, it’s important to agree
beforehand on who-does-what, using the submissions claim feature and how responding to incoming clarifi-
cation requests is handled. Having a shared chat/IM channel may help when unexpected issues arise.

Scoreboard: by default DOMjudge presents all teams in the same scoreboard. Per-site scoreboards can be
implemented either by using team categories or team affiliations in combination with the scoreboard filtering
option.

41

C Developer information

This section contains instructions specifically for those wishing to modify the DOMjudge source. If you have
any questions about developing DOMjudge, or if you want to share your changes that may be useful to
others, please don’t hesitate to contact us through our development mailing list .

C.1 Bootstrapping from Git repository sources

The installation steps in this document assume that you are using a downloaded tarball from the DOMjudge
website. If you want to install from Git repository sources, because you want to use the bleeding edge code
or consider to send a patch to the developers, the configure/build system first has to be bootstrapped.

This requires additional software to be installed:

• The GNU autoconf/automake toolset

• flexc++ and bisonc++ for generating the parsing code of the optional checktestdata script.

• Linuxdoc and groff to build the admin and judge documentation from SGML sources and a LaTeX
installation to generate the PDF admin, judge and default team manual.

On Debian(-based) systems, the following apt-get command should install the additionally required packages
(next to the 3.2 (standard set of packages)):

apt-get install autoconf automake git flexc++ bisonc++

When this software is present, bootstrapping can be done by running make dist, which creates the
configure script and generates documentation from SGML/LaTeX sources.

C.2 Maintainer mode installation

Besides the two modes of installation described in section 3.3 (Installation system), DOMjudge provides a
special maintainer mode installation. This method does an in-place installation within the source tree. This
allows one to immediately see effects when modifying code.

This method requires some special steps which can most easily be run via makefile rules as follows:

make maintainer-conf [CONFIGURE_FLAGS=<extra options for ./configure>]
make maintainer-install

Note that these targets have to be executed separately and they replace the steps described in the section
3.3 (Installation system); also no –prefix flag or other directoriess have to be specified to configure.

C.3 Makefile structure

The Makefiles in the source tree use a recursion mechanism to run make targets within the relevant sub-
directories. The recursion is handled by the REC_TARGETS and SUBDIRS variables and the recursion step is

42

http://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-devel
http://flexcpp.sourceforge.net/
http://bisoncpp.sourceforge.net/

APPENDIX C. DEVELOPER INFORMATION 43

executed in Makefile.global. Any target added to the REC_TARGETS list will be recursively called in all
directories in SUBDIRS. Moreover, a local variant of the target with -l appended is called after recursing into
the subdirectories, so recursion is depth-first.

The targets dist, clean, distclean, maintainer-clean are recursive by default, which means that these
call their local -l variants in all directories containing a Makefile. This allows for true depth-first traversal,
which is necessary to correctly run the *clean targets: otherwise e.g. paths.mk will be deleted before
subdirectory *clean targets are called that depend on information in it.

	DOMjudge overview
	Features
	Requirements
	Copyright and licencing
	Contact

	Contest planning
	Contest hardware
	Requirements

	Installation and configuration
	Quick installation
	Prerequisites
	Installation system
	Configuration
	Executables
	Configuration of languages
	Configuration of special run and compare programs
	Alerting system
	Other configurable scripts
	Submission methods
	Database installation
	Web server configuration
	Logging & debugging
	Installation of a judgehost
	Building and installing the submit client
	(Re)generating documentation and the team manual
	Optional features
	Upgrading

	Setting up a contest
	Configure the contest data
	Contest milestones
	User authentication
	Providing testdata
	Start the daemons
	Check that everything works
	Testing jury solutions

	Team Workstations
	Web interface
	Jury and Administrator view
	The scoreboard
	Balloons

	Security
	Considerations
	Internal security
	Root privileges
	File system privileges
	External security

	Common problems and their solutions
	Java compilers and the chroot
	The Java virtual machine (jvm) and memory limits
	Java class naming
	GCJ compiler warnings
	C#/mono support
	Memory limit errors in the web interface
	Compiler errors: `runguard: root privileges not dropped'

	Multi-site contests
	Developer information
	Bootstrapping from Git repository sources
	Maintainer mode installation
	Makefile structure

