
DOMjudge Administrator's Manual

by the DOMjudge team Fri, 16 May 2014 15:55:15 +0200

This do
ument provides information about DOMjudge installation,
on�guration and operation for the DOMjudge

administrator. A separate manual is available for teams and for jury members. Do
ument version: aad719b

Contents

1 DOMjudge overview 5

1.1 Features . 5

1.2 Requirements . 5

1.3 Copyright and li
en
ing . 6

1.4 Conta
t . 7

2 Contest planning 8

2.1 Contest hardware . 8

2.2 Requirements . 8

3 Installation and
on�guration 11

3.1 Qui
k installation . 11

3.2 Prerequisites . 12

3.3 Installation system . 13

3.4 Con�guration . 14

3.5 Con�guration of languages . 14

3.6 Con�guration of spe
ial run and
ompare programs . 15

3.7 Alerting system . 17

3.8 Other
on�gurable s
ripts . 17

3.9 Submission methods . 17

3.10 Database installation . 17

3.11 Web server
on�guration . 19

3.12 Logging & debugging . 19

3.13 Installation of a judgehost . 20

3.14 Building and installing the submit
lient . 20

3.15 (Re)generating do
umentation and the team manual . 21

3.16 Optional features . 22

3.17 Upgrading . 24

2

CONTENTS 3

4 Setting up a
ontest 25

4.1 Con�gure the
ontest data . 25

4.2 Contest milestones . 28

4.3 Team authenti
ation . 28

4.4 Providing testdata . 30

4.5 Start the daemons . 30

4.6 Che
k that everything works . 30

4.7 Testing jury solutions . 31

5 Team Workstations 32

6 Web interfa
e 33

6.1 Jury and Administrator view . 33

6.2 The s
oreboard . 33

6.3 Balloons . 35

7 Se
urity 36

7.1 Considerations . 36

7.2 Internal se
urity . 36

7.3 Root privileges . 37

7.4 File system privileges . 37

7.5 External se
urity . 38

A Common problems and their solutions 39

A.1 Java
ompilers and the
hroot . 39

A.2 The Java virtual ma
hine (jvm) and memory limits . 39

A.3 Java
lass naming . 40

A.4 GCJ
ompiler warnings . 40

A.5 Error: `submit_
opy.sh failed with exit
ode XX' . 41

A.6 C#/mono support . 41

A.7 Memory limit errors in the web interfa
e . 41

A.8 Compiler errors: `runguard: root privileges not dropped' . 41

B Multi-site
ontests 42

C DOMjudge and the ICPC validator interfa
e standard 43

D Submitdaemon and the Dolstra proto
ol 44

D.1 Dolstra proto
ol requirements . 45

CONTENTS 4

E Developer information 46

E.1 Bootstrapping from Git repository sour
es . 46

E.2 Maintainer mode installation . 46

E.3 Make�le stru
ture . 46

1 DOMjudge overview

DOMjudge is a system for running programming
ontests like the ACM regional and world
hampionship

programming
ontests.

This means that teams are on-site and have a �xed time period (mostly 5 hours) and one
omputer to solve a

number of problems (mostly 6-10). Problems are solved by writing a program in one of the allowed languages,

that reads input a

ording to the problem input spe
i�
ation and writes the
orre
t,
orresponding output.

The judging is done by submitting the sour
e
ode of the solution to the jury. There the jury system
ompiles

and runs the program and
ompares the program output with the expe
ted output.

This software
an be used to handle the submission and judging during su
h
ontests. It also handles

feedba
k to the teams and
ommuni
ation on problems (
lari�
ation requests). It has web interfa
es for the

jury, the teams (their submissions and
lari�
ation requests) and the publi
 (s
oreboard).

1.1 Features

A global overview of the features that DOMjudge provides:

• Automati
 judging with distributed (s
alable) judge hosts

• Web interfa
e for portability and simpli
ity

• Modular system for plugging in languages/
ompilers and more

• Detailed jury information (submissions, judgings) and options (rejudge,
lari�
ations)

• Designed with se
urity in mind

• Has been used in many live
ontests

• Open Sour
e, Free Software

1.2 Requirements

This is a (rough) list of the requirements for DOMjudge.

• At least one ma
hine running Linux, with (sudo) root a

ess

• Apa
he web server with PHP 5.2 or newer and PHP-
ommand line interfa
e

• MySQL database server version 4.1.0 or newer

• Compilers for the languages you want to support

A 2.2 (detailed list of requirements) is
ontained in the 3 (Installation and Con�guration)
hapter.

5

CHAPTER 1. DOMJUDGE OVERVIEW 6

1.3 Copyright and li
en
ing

DOMjudge is developed by Jaap Eldering, Thijs Kinkhorst, Peter van de Werken and Tobias Werth. Devel-

opment is hosted at Study Asso
iation A-Eskwadraat , Utre
ht University , The Netherlands.

It is Copyright (
) 2004 - 2014 by The DOMjudge Developers.

DOMjudge, in
luding its do
umentation, is free software; you
an redistribute it and/or modify it under the

terms of the GNU General Publi
 Li
ense http://www.gnu.org/
opyleft/gpl.html as published by the

Free Software Foundation; either version 2, or (at your option) any later version. See the �le COPYING.

This software is partly based on
ode by other people. These a
knowledgements are made in the respe
tive

�les, but we would like to name them here too:

• dash (i386) is in
luded, built from the Debian dash sour
es (
opyright various people, see

do
/dash.
opyright).

• mkstemps.h and basename.h are modi�ed versions from the GNU libiberty library (
opyright Free

Software Foundation).

• lib.database.php by Jeroen van Wol�elaar et al.

• submit.

 and submitdaemon.

 are based on submit.pl and submitdaemon.pl by Eel
o Dolstra.

• runguard.
 was originally based on timeout from The Coroner's Toolkit by Wietse Venema.

• sorttable.js by Stuart Langridge.

• js
olor.js by Jan Odvarko.

• tabber.js by Patri
k Fitzgerald.

• GeSHi syntax highlighter library by Benny Baumann, Nigel M
Nie.

• The DOMjudge logo is based on the NKP 2004 logo made by Erik van Sebille.

• Several i
ons have been taken from the phpMyAdmin proje
t.

• Several M4 auto
onf ma
ros from the Auto
onf ar
hive by various people are in
luded under m4/.

1.3.1 Non-GPL li
en
ed parts of DOMjudge

A binary version of the dash shell (stati
ally
ompiled) is distributed with DOMjudge. This program is

opyright by various people under the BSD li
en
e and a part under the GNU GPL version 2, see COPYING.BSD

and do
/dash.
opyright for more details. Sour
es
an be downloaded from:

http://www.domjudge.org/sour
es/ .

The sorttable.js s
ript is
opyright by Stuart Langridge and li
en
ed under the MIT li
en
e, see

COPYING.MIT. This software was downloaded from

http://www.kryogenix.org/
ode/browser/sorttable/ . The js
olor.js s
ript is
opyright by Jan

Odvarko and li
en
ed under the GNU LGPL. It was obtained at http://js
olor.
om . The tabber.js

s
ript is
opyright by Patri
k Fitzgerald and li
en
ed under the MIT li
en
e, see COPYING.MIT. It was down-

loaded from http://www.barelyfitz.
om/proje
ts/tabber/ .

The M4 auto
onf ma
ros are li
en
ed under all-permissive and GPL3+ li
en
es; see the respe
tive �les for

details.

http://www.gnu.org/copyleft/gpl.html
http://www.domjudge.org/sources/
http://www.kryogenix.org/code/browser/sorttable/
http://jscolor.com
http://www.barelyfitz.com/projects/tabber/

CHAPTER 1. DOMJUDGE OVERVIEW 7

DOMjudge in
ludes spe
i�
ations of a number of interfa
es. These spe
i�
ations are dedi
ated to the publi

domain, as spe
i�ed in the Creative Commons Publi
 Domain Dedi
ation (CC0 1.0) . These spe
i�
ations

an be found as appendi
es in the judge manual and as separate ASCII text �les in the do
umentation

dire
tory:

• The
he
ktestdata language grammar.

• The DOMjudge problem format zip-bundle.

1.3.2 About the name and logo

The name of this judging system is inspired by a very important and well known landmark in the
ity of

Utre
ht: the dome tower,
alled the `Dom' in Dut
h. The logo of the 2004 Dut
h Programming Champi-

onships (for whi
h this system was originally developed) depi
ts a representation of the Dom in zeros and

ones. We based the name and logo of DOMjudge on that.

We would like to thank Erik van Sebille, the original
reator of the logo. The logo is under a GPL li
en
e,

but Erik suggested a "free as in beer" li
en
e �rst: you're allowed to use it, but you owe Erik a free beer in

ase might you en
ounter him.

1.4 Conta
t

The DOMjudge homepage
an be found at: http://www.domjudge.org/

We have a low volume mailing list for announ
ements of new releases.

The authors
an be rea
hed through the development mailing list: domjudge-devel�lists.a-eskwadraat.nl .

You need to be subs
ribed before you
an post. See the list information page for subs
ription and more

details.

Some developers and users of DOMjudge linger on the IRC
hannel dedi
ated to DOMjudge on the Freenode

network: server ir
.freenode.net,
hannel #domjudge. Feel free to drop by with your questions and

omments.

2 Contest planning

2.1 Contest hardware

DOMjudge dis
erns the following kinds of hosts:

Team
omputer

Workstation for a team, where they develop their solutions and from whi
h they submit them to the

jury system. The only part of DOMjudge that runs here is the optional
ommand line submit
lient;

all other intera
tion by teams is done with a browser via the web interfa
e.

DOMjudge server

A host that re
eives the submissions, runs the database and serves the web pages. This host will run

Apa
he, and MySQL. Also
alled domserver for brevity.

Judgehosts

A number of hosts, at least one, that will retrieve submitted solutions from the DOMjudge server,

ompile and run them and send the results ba
k to the server. They will run the judgedaemon from

DOMjudge.

Jury / admin workstations

The jury members (persons) that want to monitor the
ontest need just any workstation with a web

browser to a

ess the web interfa
e. No DOMjudge software runs on these ma
hines.

One (virtual) ma
hine is required to run the DOMserver. The minimum amount of judgehosts is also one,

but preferably more: depending on
on�gured timeouts, judging one solution
an tie up a judgehost for

several minutes, and if there's a problem with one judgehost it
an be resolved while judging
ontinues on

the others.

As a rule of thumb, we re
ommend one judgehost per 20 teams.

However, overprovisioning does not hurt: DOMjudge s
ales easily in the number of judegehosts, so if hardware

is available, by all means use it. But running a
ontest with fewer ma
hines will equally work well, only the

waiting time for teams to re
eive an answer may in
rease.

Ea
h judgehost should be a dedi
ated (virtual) ma
hine that performs no other tasks. For example, although

running a judgehost on the same ma
hine as the domserver is possible, it's not re
ommended ex
ept for testing

purposes. Judgehosts should also not double as lo
al workstations for jury members. Having all judgehosts

be of uniform hardware
on�guration helps in
reating a fair, reprodu
ible setup; in the ideal
ase they are

run on the same type of ma
hines that the teams use.

DOMjudge supports running multiple judgedaemons in parallel on a single judgehost ma
hine. This might

be useful on multi-
ore ma
hines. Note that although ea
h judgedaemon pro
ess
an be bound to one single

CPU
ore (using Linux
groups), shared use of other resour
es su
h as disk I/O might still have a minor

e�e
t on run times. For more details on using this, see the se
tion 3.16 (Installation: optional features).

2.2 Requirements

2.2.1 System requirements

The requirements for the deployment of DOMjudge are:

8

CHAPTER 2. CONTEST PLANNING 9

• Computers for the domserver and judgehosts must run Linux or a Unix variant. This software has

been developed mostly under Debian GNU/Linux, and the manual adds some spe
i�
 hints for that,

whi
h also apply to Debian derivative distributions like Ubuntu. DOMjudge has been tested a bit

under other Linux distributions and FreeBSD. We try to adhere to POSIX standards.

• (Lo
al) root a

ess on the domserver and judgehosts for
on�guring sudo, installing some �les with

restri
ted permissions and for (un)mounting the pro
 �le system when using Java. See 7.3 (Se
urity:

root privileges) for more details.

• A TCP/IP network whi
h
onne
ts all DOMjudge and team
omputers. Extra network se
urity whi
h

restri
ts internet a

ess and a

ess to other servi
es (ssh, mail, talk, et
..) is advisable, but not provided

by this software, see 7.5 (Se
urity: external se
urity) for more details. TCP/IP networking is used in

a few di�erent ways:

� The judgehosts use TCP/IP
onne
tions to
onne
t to the MySQL database on port 3306.

� HTTP tra�
 from teams, the publi
 and jury to the web server, port 80 or 443.

� The `submit'
ommand line
lient
onne
ts to the web server also via HTTP.

When using the IP_ADDRESS authenti
ation s
heme, then ea
h team
omputer needs to have a

unique IP address from the view of the DOMjudge server, see 4.3 (Contest setup: team authenti
ation)

for more details.

2.2.2 Software requirements

The following software is required for running DOMjudge.

• For every supported programming language a
ompiler is needed; preferably one that
an generate

stati
ally linked stand-alone exe
utables.

• Apa
he web server with support for PHP >= 5.2.0 and the mysqli and json extensions for PHP. We

also re
ommend the posix extension for extra debugging information.

• MySQL >= 4.1.x database and
lient software

• PHP >= 5.2.0
ommand line interfa
e and the mysqli and json extensions.

• A POSIX
ompliant shell in /bin/sh (e.g. bash or ash)

• A stati
ally
ompiled POSIX shell, lo
ated in lib/judge/sh-stati
 (dash is in
luded for Linux IA32)

• A lot of standard (GNU) programs, a probably in
omplete list: hostname, date, dirname, basename,

tou
h,
hmod,
p, mv,
at, grep, di�, w
, mkdir, mk�fo, mount, sleep, head, tail, pgrep

• sudo to gain root privileges

• Apa
he htpasswd

• xsltpro

from the GNOME XSLT library pa
kage.

• A LaTeX installation to regenerate the team PDF-manual with site spe
i�

on�guration settings

in
luded.

The following items are optional, but may be required to use
ertain fun
tionality.

• phpMyAdmin , to be able to a

ess the database in an emergen
y or for data import/export

CHAPTER 2. CONTEST PLANNING 10

• An NTP daemon (for keeping the
lo
ks between jury system and judgehosts in syn
)

• lib
url (to use the
ommand line submit
lient with the web interfa
e)

• libmagi
 (for
ommand line submit
lient to dete
t binary �le submissions)

• PECL xdi� extension (to reliably make di�s between submissions, DOMjudge will try alternative

approa
hes if it's not available)

• PHP zip Extension (to upload problem data via zip bundles)

• beep for audible noti�
ation of errors, submissions and judgings, when using the default alert s
ript.

Software required for building DOMjudge:

• g

 and g++ with standard libraries. Other
ompilers and libraries might also work: we have su

ess-

fully
ompiled DOMjudge sour
es with Clang from the LLVM proje
t; the C library should support

the POSIX.1-2008 spe
i�
ation.

• GNU make

• The Boost regular expression library and the GNU Multiple Pre
ision library to build the

he
ktestdata program for advan
ed
he
king of input/output data
orre
tness. These are optional

and
an be disabled with the
on�gure option �disable-
he
ktestdata.

2.2.3 Requirements for team workstations

In the most basi
 setup the team workstations only need (next to the tools needed for program development)

a web browser. The web interfa
e fully works with any known browser, but a HTML5-
apable browser

adds more
onvenien
e fun
ions. With JavaS
ript disabled, all basi
 fun
tionality remains working, with the

notable ex
eption of multiple �le uploads on non-HTML5-ready browsers.

3 Installation and
on�guration

This
hapter details a fresh installation of DOMjudge. The �rst se
tion is a Qui
k Installation Referen
e,

but that should only be used by those already a
quainted with the system. A detailed guide follows after

that.

3.1 Qui
k installation

Note: this is not a repla
ement for the thorough installation instru
tions below, but more a
heat-sheet for

those who've already installed DOMjudge before and need a few hints. When in doubt, always
onsult the

full installation instru
tion.

External software:

• Install the MySQL-server, set a root password for it and make it a

essible from all judgehosts.

• Install Apa
he, PHP and (re
ommended) phpMyAdmin.

• Make sure PHP works for the web server and
ommand line s
ripts.

• Install ne
essary
ompilers on the judgehosts.

• See also 3.2 (an example
ommand line for Debian GNU/Linux).

DOMjudge:

• Extra
t the sour
e tarball and run ./
onfigure [�enable-fhs℄ �prefix=<basepath>.

• Run make domserver judgehost do
s or just those targets you want installed on the
urrent host.

• Run make install-{domserver,judgehost,do
s} as root to install the system.

On the domserver host:

• Install the MySQL database using bin/dj-setup-database -u root -r install on the domserver

host.

• Add et
/apa
he.
onf to your Apa
he
on�guration, edit it to your needs, reload web

server: sudo ln -s .../domserver/et
/apa
he.
onf /et
/apa
he2/
onf.d/domjudge.
onf &&

sudo apa
he2
tl gra
eful

• Che
k that the web interfa
e works (/team, /publi
 and /jury) and
he
k that the jury interfa
e is

password prote
ted. Add individual user a

ounts for jury members to et
/htpasswd-jury.

• Add useful
ontest data through the jury web interfa
e or with phpMyAdmin.

• Run the
on�g
he
ker in the jury web interfa
e.

On the judgehosts:

• RedHat: useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

Debian: useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run

(
he
k spe
i�
 options of useradd, sin
e these vary per system)

11

CHAPTER 3. INSTALLATION AND CONFIGURATION 12

• Add to /et
/sudoers.d/ or append to /et
/sudoers the sudoers
on�guration as in

et
/sudoers-domjudge.

• Copy the �le et
/dbpasswords.se
ret from the domserver to all judgehosts to syn
hronise database

passwords.

• Optionally build a
hroot to support interpreted or byte-
ompiled langauges su
h as Java, see the

appendix on A.1 (setting up a
hroot).

• Start the judge daemon: bin/judgedaemon

It should be done by now. As a
he
k that (almost) everything works, the set of test sour
es
an be submitted:

d tests

make
he
k

Note that this requires AUTH_METHOD in et
/domserver-
onfig.php to be
on�gured to IPADDRESS or FIXED,

su
h that one team has passwordless a

ess to the web interfa
e. You may also want to set the environment

variable SUBMITBASEURL to your DOMjudge base URL, e.g. http://domjudge.example.
om/.

Then, in the main jury web interfa
e, sele
t the admin link judging veri�er to automati
ally verify most of

the test sour
es, ex
ept for a few with multiple possible out
omes; these have to be veri�ed by hand. Read

the test sour
es for a des
ription of what should (not) happen.

Optionally:

• Install the submit
lient on the team workstations.

• Generate one-time passwords for all the teams in the web interfa
e.

• Further tighten the se
urity of the system, e.g. by applying �rewall rules.

• Start the balloon noti�
ation daemon:
d bin; ./balloons; or use the balloon web interfa
e.

• Setup the Java
hroot environment on the judgehosts to use Java with
hroot:

bin/dj_make_
hroot <
hrootdir> <ar
hite
ture>

$EDITOR lib/judge/
hroot-startstop.sh

enable the
hroot-startstop.sh s
ript in et
/judgehost-
onfig.php and add

et
/sudoers-domjudge to /et
/sudoers.d/ or append it to /et
/sudoers.

• Set up
group support in the judgedaemons.

• For additional features in the jury web interfa
e, the following PHP extensions
an be installed:

� xdi� PECL extension for di�s between submissions;

� zip PHP-bundled extension (�enable-zip) for uploading problem data as zip-bundles (enabled

by default in Debian, but not in all other Linux distributions).

3.2 Prerequisites

For a detailed list of the hardware and software requirements, please refer to the previous
hapter on
ontest

planning.

CHAPTER 3. INSTALLATION AND CONFIGURATION 13

3.2.1 Debian installation
ommand

For your
onvenien
e, the following
ommand will install needed software on the DOMjudge server as men-

tioned above when using Debian GNU/Linux, or one of its derivate distributions like Ubuntu.

apt-get install g

 g++ make lib
url4-gnutls-dev mysql-server \

apa
he2 php5 php5-
li libapa
he2-mod-php5 php5-mysql php5-json \

php-geshi phpmyadmin \

ntp sudo pro
ps xsltpro
 \

libboost-regex-dev libgmp3-dev linuxdo
-tools linuxdo
-tools-text \

transfig groff texlive-latex-re
ommended texlive-latex-extra \

texlive-fonts-re
ommended

On a judgehost, the following should be su�
ient. The last line shows some example
ompilers to install for

C, C++, Java (GNU), Java (Ora
le/Sun), Haskell and Pas
al;
hange the list as appropriate.

apt-get install make sudo php5-
li php5-mysql php5-json ntp xsltpro
 pro
ps \

g

 g++ g
j openjdk-6-jre-headless openjdk-6-jdk gh
 fp-
ompiler

3.3 Installation system

The DOMjudge build/install system
onsists of a
onfigure s
ript and make�les, but when installing it,

some more
are has to be taken than simply running './
onfigure && make && make install'. DOMjudge

needs to be installed both on the server and on the judgehosts. These require di�erent parts of the
omplete

system to be present and
an be installed separately. Within the build system these parts are referred to as

domserver, judgehost and additionally do
s for all do
umentation.

There are three di�erent methods for installing DOMjudge:

Single dire
tory tree

With this method all DOMjudge related �les and programs are installed in a single dire
tory tree whi
h

is spe
i�ed by the pre�x option of
on�gure, like

./
onfigure --prefix=$HOME/domjudge

This will install ea
h of the domserver, judgehost, do
s parts in a subdire
tory

$HOME/domjudge/domserver et
. These subdire
tories
an be overridden from the defaults

with options like �with-domserver_root=DIR, see
onfigure �help for a
omplete list. The pre�x

defaults to /opt/domjudge.

Besides the installed �les, there will also be dire
tories for logging, temporary �les, submitted sour
es

and judging data:

log

ontains all log �les.

tmp

ontains temporary �les.

submissions

(optionally) on the domserver
ontains all
orre
tly submitted �les: as ba
kup only, the database

is the authoritative sour
e. Note that this dire
tory must be writable by the web server for this

feature to work.

CHAPTER 3. INSTALLATION AND CONFIGURATION 14

judgings

lo
ation on judgehosts where submissions are tested, ea
h in its own subdire
tory.

This method of installation is the default and probably most pra
ti
al for normal purposes as it keeps

all �les together, hen
e easily found.

FHS
ompliant

This method installs DOMjudge in dire
tories a

ording to the Filesystem Hierar
hy Standard . It
an

be enabled by passing the option �enable-fhs to
onfigure and in this
ase the pre�x defaults to

/usr/lo
al. Files will be pla
ed e.g. in PREFIX/share/domjudge, PREFIX/bin, /var/log, /tmp,

/et
/domjudge.

Maintainer install

Meant for those wishing to do development on the DOMjudge sour
e
ode. See the E (appendix with

developer information).

After running the
onfigure s
ript, the system
an be built and installed. Ea
h of the domserver,

judgehost, do
s parts
an be built and installed separately, respe
tively by:

make domserver && sudo make install-domserver

make judgehost && sudo make install-judgehost

make do
s && make install-do
s

Note that even when installing e.g. in your own home dire
tory, root privileges are still required for domserver

and judgehost installation, be
ause user and group ownership of password �les, some dire
tories and to give

sudo a

ess to runguard. One should not run DOMjudge programs and daemons under the root user

however, but under a normal user: runguard is spe
i�
ally designed to be the only part invoked as root

(through sudo) to make this unne
essary and running as root will give rise to problems, see A.8 (runguard:

root privileges not dropped) in the
ommon problems se
tion.

For a list of basi
 make targets, run make in the sour
e root dire
tory without arguments.

3.4 Con�guration

Con�guration of the judge system is mostly done by editing the
on�guration variables on the page

Configuration settings available in the administrator interfa
e. Changes take e�e
t immediately.

Some settings that are tightly
oupled to the �lesystem
an be
on�gured in the �les in et
:

domserver-
onfig.php, judgehost-
onfig.php,
ommon-
onfig.php for the
on�guration options of

the domserver, judgehost and shared
on�guration options respe
tively. The latter should be syn
hronised

between domserver and judgehosts. Des
riptions of settings are in
luded in these �les. The judgedaemon

must be restarted for
hanges to take e�e
t, while these are dire
tly pi
ked up by the webinterfa
es.

Besides these settings, there are a few other pla
es where
hanges
an be made to the system, see 3.8 (other

on�gurable s
ripts).

3.5 Con�guration of languages

Con�guration of the
ompilers of the supported languages should be done separately. For ea
h supported

language a shell-s
ript named
ompile_<lang>.sh should be
reated and pla
ed in lib/judge on the

judgehosts, where <lang> is the ID of the language as spe
i�ed in the database. For more information,

CHAPTER 3. INSTALLATION AND CONFIGURATION 15

see for example
ompile_
.sh, and
ompile.sh in lib/judge for syntax. Note that
ompile s
ripts are

in
luded for the most
ommon languages already.

Interpreted languages and non-stati
ally linked binaries
an in prin
iple also be used, but requires that all

dependen
ies are added to the
hroot environment.

Interpreted languages do not generate an exe
utable and in prin
iple do not need a
ompilation step. How-

ever, to be able to use interpreted languages (also Ora
le's Java), a s
ript must be generated during the

ompilation step, whi
h will fun
tion as the exe
utable: the s
ript must run the interpreter on the sour
e.

See
ompile_perl.sh and
ompile_java_java
.sh in lib/judge for examples.

DOMjudge supports the use of Ora
le (Sun) Java within a
hroot environment. For this, a
hroot environment

whi
h in
ludes the Java libraries must �rst be built. This
an be a

omplished with the in
luded s
ript

dj_make_
hroot: run this as root and pass as arguments the target dire
tory to build the
hroot environment

in and as se
ond argument the target ma
hine ar
hite
ture. Start the s
ript without arguments for usage

information. See also se
tions 3.13 (Installation of a judgehost) and A.1 (Problems: Java &
hroot).

3.6 Con�guration of spe
ial run and
ompare programs

To allow for problems that do not �t within the standard s
heme of �xed input and/or output, DOMjudge

has the possibility to
hange the way submissions are run and
he
ked for
orre
tness.

The ba
k end s
ript test
ase_run.sh that handles the running and
he
king of submissions,
alls separate

programs for running submissions and
omparison of the results. These
an be spe
ialised and adapted to

the requirements per problem. For this, one has to
reate programs or s
ripts named run_<tag> and/or

ompare_<tag> in the lib/judge dire
tory, see run and
ompare for examples and usage information.

Then the <tag> must be spe
i�ed in the spe
ial_run and/or spe
ial_
ompare �elds of the problem (an

empty value means that the default run and
ompare s
ripts should be used). To simplify the use of
ustom

run and
ompare programs, DOMjudge
omes with wrapper s
ripts that handle the tedious, standard part.

In most
ases it will probably be
onvenient to use these, see run_wrapper and
ompare_wrapper for details,

and the usage explanations below.

3.6.1 Compare programs

Implementing a spe
ial
ompare program, also
alled a validator ,
an be done in two ways: either write

a program that is
alled dire
tly (by test
ase_run.sh) or use a
opy of the
ompare_wrapper s
ript. In

the �rst
ase, the
ompare program must adhere to the C (ICPC validator interfa
e). The se
ond
ase

is probably the easiest solution: the s
ript
ompare_wrapper generates the XML result �le and handles

redire
tion of input/output for you. Use this wrapper by
opying or symlinking it to
ompare_<tag> and

let the jury write a
he
ker program whi
h
an be
alled as

he
k_<tag> <testdata.in> <program.out> <testdata.out>

This program should write some kind of di�eren
e to stdout. No output from the
he
ker program results

in a
orre
t verdi
t and a nonzero exit
ode in an internal (system) error. See as an example the in
luded

program
he
k_float, whi
h
ompares �oating point numbers. The name of the
he
k program and any

parameters
an also be modi�ed in the
ompare_wrapper s
ript.

For example, to
ompare output while ignoring DOS/UNIX newline di�eren
es, one
an
opy

ompare_wrapper to
ompare_dos_newline_OK and in that �le set the variable CHECK_PROGRAM="`whi
h

diff`" and repla
e the line

CHAPTER 3. INSTALLATION AND CONFIGURATION 16

"$CHECK_PROGRAM" $CHECK_OPTIONS "$TESTIN" "$PROGRAM" "$TESTOUT" > "$DIFFOUT"

by the lines

sed -i 's/\r$//' "$TESTOUT"

sed 's/\r$//' "$PROGRAM" | $CHECK_PROGRAM -a - "$TESTOUT" > "$DIFFOUT"

Note that these
ommands will modify the lo
al
opy of the jury testdata, but the original output generated

by the team's solution is retained, and a plain di� output is generated. Next, for ea
h problem that you

want to use this validator for, set the spe
ial_
ompare �eld to dos_newline_OK. As an alternative to this

modi�ed validator s
ript, one
an a

ept presentation errors as
orre
t answers by adding the mapping

'presentation-error' => '
orre
t',

to the results_remap
on�guration variable (to be found in the admin web interfa
e under
on�guration

settings).

For more details on modifying validator s
ripts, see the
omments at the top of the �les test
ase_run.sh,

ompare_wrapper and (when not using the wrapper) the appendix on the C (ICPC validator interfa
e).

DOMjudge supports a presentation-error result. The default
ompare program returns this result when

output only di�ers by whitespa
e; this is
ounted as an in
orre
t submission. The s
ript
ompare_wrapper

does not support presentation error results however. By default presentation errors are remapped to wrong

answer; this
an be
hanged with results_remap.

3.6.2 Run programs

Spe
ial run programs
an be used, for example, to
reate an intera
tive problem, where the
ontestants'

program ex
hanges information with a jury program and re
eives data depending on its own output. The

problem boolfind is in
luded as an example intera
tive problem, see do
s/examples/boolfind.pdf for the

des
ription.

Usage is similar to
ompare programs: you
an either
reate a program run_<tag> yourself, or use the

provided wrapper s
ript, whi
h handles bi-dire
tional
ommuni
ation between a jury program and the
on-

testants' program on stdin/stdout.

For the �rst
ase, the
alling syntax that the program must a

ept is equal to the
alling syntax of

run_wrapper, whi
h is do
umented in that �le. When using run_wrapper, you should
opy or symlink

it to another name run_<tag> and the jury must write a program named exa
tly runjury_<tag>, a

ept-

ing the
alling syntax

runjury_<tag> <testdata.in> <program.out>

where the arguments are �les to read input testdata from and write program output to, respe
tively. This

program will
ommuni
ate via stdin/stdout with the
ontestants' program. A spe
ial
ompare program

must probably also be
reated, so the exa
t data written to <program.out> is not important, as long as

the
orre
tness of the
ontestants' program
an be dedu
ed from the
ontents by the
ompare program.

CHAPTER 3. INSTALLATION AND CONFIGURATION 17

3.7 Alerting system

DOMjudge in
ludes an alerting system. This allows the administrator to re
eive alerts when important

system events happen, e.g. an error o

urs, or a submission or judging is made.

These alerts are passed to a plugin s
ript alert whi
h
an easily be adapted to �t your needs. The default

s
ript emits di�erent beeping sounds for the di�erent messages when the beep program is available, but it

ould for example also be modi�ed to send a mail on spe
i�
 issues,
onne
t to monitoring software like

Nagios, et
. For more details, see the s
ript lib/alert.

3.8 Other
on�gurable s
ripts

There are a few more pla
es where some
on�guration of the system
an be made. These are sometimes

needed in non-standard environments.

• In bin/dj_make_
hroot on a judgehost some
hanges to variables
an be made, most notably

DEBMIRROR to sele
t a Debian mirror site near you.

• Optional s
ripts submit/submit_
opy.sh and lib/judge/
hroot-startstop.sh
an be modi�ed to

suit your lo
al environment. See
omments in those �les for more information.

3.9 Submission methods

DOMjudge supports two submission methods: via the
ommand line submit program and via the web

interfa
e. From experien
e, both methods have users that prefer the one above the other. Note that the

submit
lient
an only be used when the IPADDRESS authenti
ation method is used.

The
ommand line submit
lient
an send submissions by either using the web interfa
e internally (http

proto
ol, the default), or using a spe
ial
ommand line submit proto
ol,
alled Dolstra. The latter has some

spe
ial features but is not usually needed. See D (Submitdaemon and the Dolstra proto
ol) for details on

this.

Using the http proto
ol with the submit
lient requires the lib
URL library development �les at
ompile

time (the submit
lient is stati
ally linked to lib
URL to avoid a runtime dependen
y).

The database is the authoritative version for submission sour
es; �le system storage is available as an easy

way to a

ess the sour
e �les and as ba
kup. The program bin/restore_sour
es2db is available to re
over

the submission table in the database from these �les. The
ommand line daemon will automati
ally store

sour
es on the �le system; the web server needs write permissions on <domjudge_submitdir> and ignores

�le system storage if these permissions are not set.

3.10 Database installation

DOMjudge uses a MySQL database server for information storage.

The database stru
ture and privileges are in
luded in MySQL dump �les in the sql subdire
tory. The

default database name is domjudge. This
an be
hanged manually in the et
/dbpasswords.se
ret �le:

the database name as spe
i�ed in this �le will be used when installing.

Installation of the database is done with bin/dj-setup-database. For this, you need an installed and

on�gured MySQL server and administrator a

ess to it. Run

CHAPTER 3. INSTALLATION AND CONFIGURATION 18

dj-setup-database genpass

dj-setup-database [-u <admin_user>℄ [-p <password>|-r℄ install

This �rst
reates the DOMjudge database
redentials �le et
/dbpasswords.se
ret (optionally
hange the

random generated password, although it is not needed for normal operation). Then it
reates the database

and users and inserts some default/example data into the domjudge database. The option -r will prompt

for a password for mysql; when no user is spe
i�ed, the mysql
lient will try to read
redentials from

$HOME/.my.
nf as usual. The
ommand uninstall
an be passed to dj-setup-database to remove the

DOMjudge database and users; this deletes all data!

The domjudge database
ontains a number of tables, some of whi
h need to be manually �lled with data

before the
ontest
an be run. See the 4.1 (database se
tion of Contest setup) for details.

3.10.1 Fine tuning settings

For Apa
he, there are
ountless do
uments on how to maximise performan
e. Of parti
ular importan
e is

to ensure that the MaxClients setting is high enough to re
eive the number of parallel requests you expe
t,

but not higher than your amount of RAM allows.

As for PHP, the use of an op
ode
a
he like the Alternative PHP Ca
he (Debian pa
kage: php-ap
) is

bene�
ial for performan
e. For uploading large test
ases, see the A.7 (se
tion about memory limits).

It may be desirable or even ne
essary to �ne tune some MySQL default settings:

• max_
onne
tions: The default 100 is too low, be
ause of the
onne
tion
a
hing by Apa
he threads.

1000 is more appropriate.

• max_allowed_pa
ket: The default of 16MB might be too low when using large test
ases. This should

be
hanged both in the MySQL server and
lient
on�guration and be set to about twi
e the maximum

test
ase size.

• skip-networking or bind-address: By default MySQL only listens on a lo
al so
ket, but judgehosts

need to
onne
t remotely to it. When enabling remote
onne
tions, you may want to limit it to only

the IP's of judgehosts in the MySQL user
on�guration (or with �rewall rules).

• Root password: MySQL does not have a password for the root user by default. It's very desirable to

set one.

• Client
onne
tion settings:
lient
onne
tions from the judgehosts to the domserver are by default

unen
rypted. Depending on your network setup it may be desirable to enable this. Also, enabling

ompression
an help when working with large test
ase data.

• When maximising performan
e is required, you
an
onsider to use the Memory (formerly Heap) table

for the s
oreboard_publi
 and s
oreboard_jury tables. They will be lost in
ase of a full
rash, but

an be re
al
ulated from the jury interfa
e.

3.10.2 Setting up repli
ation or ba
kups

The MySQL server is the
entral pla
e of information storage for DOMjudge. Think well about what to do

if the MySQL host fails or loses your data.

A very robust solution is to set up a repli
ating MySQL server on another host. This will be a hot
opy of

all data up to the se
ond, and
an take over immediately in the event of failure. The MySQL manual has

more information about setting this up.

CHAPTER 3. INSTALLATION AND CONFIGURATION 19

Alternatively, you
an make regular ba
kups of your data to another host, for example with mysqldump, or

use a RAID based system.

Repli
ation
an also be used to improve performan
e, by dire
ting all sele
t-queries to one or more repli
ated

slave servers, while updates will still be done to the master. This is not supported out of the box, and will

require making
hanges to the DOMjudge sour
e.

3.11 Web server
on�guration

For the web interfa
e, you need to have a web server (e.g. Apa
he) installed on the domserver and made

sure that PHP
orre
tly works with it. Refer to the do
umentation of your web server and PHP for details.

You should turn PHP's magi
quotes* options o�. We also re
ommend to turn o� register_globals.

To
on�gure the web server for DOMjudge, use the Apa
he
on�guration snippet from et
/apa
he.
onf. It

ontains examples for
on�guring the DOMjudge pages with an alias dire
tive, or as a virtualhost, optionally

with SSL; it also
ontains PHP and se
urity settings. Reload the web server for
hanges to take e�e
t.

3.11.1 Jury authenti
ation

Prote
tion of the jury (and plugin) interfa
e happens through HTTP basi
-auth
on�gured in Apa
he. A

default user domjudge_jury with password equal to that in et
/dbpasswords.se
ret is set at installation.

You should add a

ounts for the individual users (admins, judges) that will a

ess the jury interfa
e. These

users
an be added with the htpasswd program to et
/htpasswd-jury:

htpasswd [<path to et
>℄/htpasswd-jury <username>

Individual judge a

ounts are needed be
ause a
tions in the jury interfa
e, e.g. who
laimed or veri�ed a

submission, are tied to this user.

Apa
he supports many types of authenti
ation ba
kends, so it's also possible to use LDAP, CAS, SAML

(Shibboleth) or any other means, as long as this results in a username being presented to DOMjudge. The

in
luded apa
he.
onf has examples.

For team authenti
ation, see 4.3 (the relevant se
tion in Contest Setup).

See also se
tion 7.4.1 (Se
urity: webserver privileges) for some details on �le permissions for the

et
/dbpasswords.se
ret and et
/htpasswd-{jury,plugin} �les.

3.12 Logging & debugging

All DOMjudge daemons and web interfa
e s
ripts support logging and debugging in a uniform manner via

fun
tions in lib.error.*. There are three ways in whi
h information is logged:

• Dire
tly to stderr for daemons or to the web page for web interfa
e s
ripts (the latter only on serious

issues).

• To a log �le set by the variable LOGFILE, whi
h is set in ea
h program. Unsetting this variable disables

this method.

• To syslog. This
an be
on�gured via the SYSLOG
on�guration variable in et
/
ommon-
onfig.php.

This option gives the �exibility of syslog, su
h as remote logging. See the syslog(daemon) do
umenta-

tion for more information. Unsetting this variable disables this method.

CHAPTER 3. INSTALLATION AND CONFIGURATION 20

Ea
h s
ript also de�nes a default threshold level for messages to be logged to stderr (VERBOSE: defaults

to LOG_INFO in daemons and LOG_ERR in the web interfa
e) and for log �le/syslog (LOGLEVEL: defaults to

LOG_DEBUG).

In
ase of problems, it is advisable to
he
k the logs for
lues. Extra debugging information
an be obtained

by setting the
on�g option DEBUG to a bitwise-or of the available DEBUG_* �ags in et
/
ommon-
onfig.php,

to e.g. generate extra SQL query and timing information in the web interfa
e.

3.13 Installation of a judgehost

A few extra steps might need to be taken to
ompletely install and
on�gure a judgehost.

For running solution programs under a non-privileged user, a user has to be added to the system(s) that

a
t as judgehost. This user does not need a home-dire
tory or password, so the following
ommand would

su�
e to add a user `domjudge-run' with minimal privileges.

On RedHat:

useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

On Debian:

useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run

For other systems
he
k the spe
i�
s of your useradd
ommand. This user must also be
on�gured as the

user under whi
h programs run via
onfigure �enable-runuser=USER; the default is domjudge-run.

Runguard needs to be able to be
ome root for
ertain operations like
hanging to the runuser and performing

a
hroot. Also, the default
hroot-startstop.sh s
ript uses sudo to gain privileges for
ertain operations.

There's a pregenerated /et
/sudoers.d/ snippet in et
/sudoers-domjudge that
ontains all required rules.

You
an put the lines in the snippet at the end of /et
/sudoers, or, for modern sudo versions, pla
e the

�le in /et
/sudoers.d/. If you
hange the user you run the judgehost at, or the installation paths, be sure

to update the sudoers rules a

ordingly.

When the
hroot setting is enabled (default), a stati
 POSIX shell has to be available for
opying it to the

hroot environment. For Linux i386, a stati
 Dash shell is in
luded, whi
h works out of the box. For other

ar
hite
tures or operating systems, a shell has to be added manually. Then simply point the lib/sh-stati

symlink to this �le. If you want to support languages that
annot be
ompiled to stati
ally linked binaries,

e.g. byte-
ompiled languages su
h as Java, or interpreted languages su
h as Python, then a
omplete
hroot

environment must be built and
on�gured. See the appendix on A.1 (setting up a
hroot) for more details.

Upon startup, the judgehost will
onne
t to the domserver and add an entry for itself to the judgehosts

table, by default enabled. If you wish to add a new judgehost but have it initially disabled, you
an add it

manually through the DOMjudge web interfa
e and set it to disabled before starting the judgedaemon.

3.14 Building and installing the submit
lient

The submit
lient
an be built with make submit
lient. There is no make target to install the submit

lient, as its lo
ation will very mu
h depend on the environment. You might e.g. want to
opy it to all team

omputers or make it available on a network �lesystem. Note that if the team
omputers run a di�erent

(version of the) operating system than the jury systems, then you need to build the submit
lient for that

OS.

CHAPTER 3. INSTALLATION AND CONFIGURATION 21

The submit
lient needs to know the address of the domserver. This
an be passed as a
ommand line option

or environment variable. The latter option makes for easier usage. A sample s
ript submit_wrapper.sh is

in
luded, whi
h sets this variable. See that s
ript for more details on how to set this up.

3.14.1 The submit
lient under Windows/Cygwin

The submit
lient
an also be built under Windows when the Cygwin environment is installed. First the

Cygwin setup.exe http://
ygwin.
om/setup.exe program must be downloaded and installed with GCC,

url-devel and maybe some more pa
kages in
luded.

When Cygwin is
orre
tly installed with all ne
essary development tools, the submit binary
an be
reated

by running
onfigure followed by make submit.exe in the submit dire
tory.

3.15 (Re)generating do
umentation and the team manual

There are three sets of do
umentation available under the do
 dire
tory in DOMjudge:

the admin-manual

for administrators of the system (this do
ument),

the judge-manual

for judges, des
ribing the jury web interfa
e and giving some general information about this system,

the team-manual

for teams, explaining how to use the system and what restri
tions there are.

The team manual is only available in PDF format and must be built from the LaTeX sour
es in do
/team after

on�guration of the system. A prebuilt team manual is in
luded, but note that it
ontains default/example

values for site-spe
i�

on�guration settings su
h as the team web interfa
e URL and judging settings su
h

as the memory limit. We strongly re
ommend rebuilding the team manual to in
lude site-spe
i�
 settings

and also to revise it to re�e
t your
ontest spe
i�
 environment and rules.

Besides a standard LaTeX installation, the team manual requires the svn and expdlist pa
kages.

These are available in TeX Live in the texlive-latex-extra pa
kage in any modern Linux distribu-

tion. Alternatively, you
an download and install them manually from their respe
tive subdire
tories in

http://mirror.
tan.org/ma
ros/latex/
ontrib .

When the do
s part of DOMjudge is installed and site-spe
i�

on�guration set, the team manual
an

be generated with the
ommand genteammanual found under do
s/team. The PDF do
ument will be

pla
ed in the
urrent dire
tory or a dire
tory given as argument. The option -w WEBBASEURI
an be

passed to set the base URI of the DOMjudge webinterfa
e; it should end with a slash and defaults to

http://example.
om/domjudge/. The following should do it on a Debian-like system:

sudo apt-get install make transfig texlive-latex-extra texlive-latex-re
ommended

d .../do
s/team

./genteammanual [-w http://your.lo
ation.example.
om/domjudge/℄ [targetdir℄

The team manual is
urrently available in two languages: English and Dut
h. We wel
ome any translations

to other languages.

The administrator's and judge's manuals are available in PDF and HTML format and prebuilt from SGML

sour
es. Rebuilding these is not normally ne
essary. To rebuild them on a Debian-like system, the following

ommands should do it:

http://cygwin.com/setup.exe
http://mirror.ctan.org/macros/latex/contrib

CHAPTER 3. INSTALLATION AND CONFIGURATION 22

sudo apt-get install linuxdo
-tools make transfig ghosts
ript groff texlive-latex-re
ommended

make -C do
/admin do
s

make -C do
/judge do
s

3.16 Optional features

3.16.1 Linux Control Groups (
groups) in the judgedaemon

DOMjudge has experimental support for using Linux Control Groups or
groups for pro
ess isolation in

the judgedaemon. Using
groups gives more a

urate measurement of a
tually allo
ated memory, whi
h is

helpful with interpreters like Java that reserve but not a
tually use lots of memory. Also, the feature will

restri
t network a

ess so no separate measures are ne
essary, and allows to run multiple judgedaemons on

a multi-
ore ma
hine.

The judgedaemon needs to run a re
ent Linux kernel (at least 3.2.0). The following steps
on�gure
groups

on Debian wheezy. Instru
tions for other distributions may be di�erent (send us your feedba
k!).

• Install the ne
essary pa
kages: # apt-get install lib
group-dev
group-bin

• Edit grub
on�g to add memory
group and swap a

ounting to the boot options. Edit

/et
/default/grub and
hange the default
ommandline to GRUB_CMDLINE_LINUX_DEFAULT="quiet

group_enable=memory swapa

ount=1". Then run update-grub and reboot.

• Compile DOMjudge with
group support. Re-run ./
onfigure and look for
group in the output.

Then rebuild the runguard with make build.

You have now
on�gured the system to use
groups, but you need to
reate the a
tual
groups that DOMjudge

will use. For that, you
an use the s
ript under mis
-tools/
reate_
groups. Edit the s
ript to mat
h your

situation �rst. This s
ript needs to be re-run after ea
h boot (e.g., add it to the judegedaemon init s
ript).

3.16.2 Multiple judgedaemons per ma
hine

With
group support set up, as per the se
tion above, you
an run multiple judgedaemons on one multi-
pu

or multi-
ore ma
hine, dedi
ating one
pu
ore to ea
h judgedaemon.

To that end, set the
puset.
pus variable in et
/
group-domjudge.
onf snippet
orre
tly, e.g. to use all

ores on a quad-
ore ma
hine set it to 0-3, and add extra unprivileged users to the system, i.e. add users

domjudge-run-<X> (where X runs through 0,1,2,3) with useradd as des
ribed in se
tion 3.13 (installation

of a judgehost). Finally, start ea
h of the judgedaemons with:

$ judgedaemon -n <X>

3.16.3 Sour
e
ode syntax highlighting

To support
oloured display of submitted sour
e
ode in the jury interfa
e, two external
lasses of syntax

highlighters are supported:

GeSHi http://qbnz.
om/highlighter and the

PEAR http://pear.php.net

Text_Highlighter
lass http://pear.php.net/pa
kage/Text_Highlighter/ . DOMjudge in
ludes a
opy

of GeSHi under the lib/ext/ dir, but tries to �nd either of those in your PHP in
lude path. When none

are found, DOMjudge falls ba
k to sour
e
ode display without highlighting.

http://qbnz.com/highlighter
http://pear.php.net
http://pear.php.net/package/Text_Highlighter/

CHAPTER 3. INSTALLATION AND CONFIGURATION 23

GeSHi

GeSHi is in
luded by default under the lib/ext/ dir.

PEAR Text Highlighter

If you prefer the PEAR Text Highlighter, �rst move away the lib/ext/geshi dire
tory. You
an install the

Text Highlighter system wide with the PEAR-provided tools, like this: pear install Text_Highlighter.

Alternatively you
an download the sour
e
ode from the Text_Highlighter website and unpa
k that under

the lib/ext/ dire
tory on the domserver. Rename the resulting Text_Highlighter-x.y.z dire
tory to just

Text.

3.16.4 NTP time syn
hronisation

We advise to install an NTP-daemon (Network Time Proto
ol) to make sure the time between domserver

and judgehost (and team
omputers) is in syn
.

3.16.5 Printing

It is re
ommended to
on�gure the lo
al desktop printing of team workstations whereever possible: this has

the most simple interfa
e and allows teams to print from within their editor.

If this is not feasible, DOMjudge in
ludes support for printing via the DOMjudge web interfa
e: the DOM-

judge server then needs to be able to deliver the uploaded �les to the printer. It
an be enabled via the

enable_printing
on�guration option in the administrator interfa
e. The exa
t
ommand used to send the

�les to a printer
an be
hanged the fun
tion send_print() in lib/www/printing.php.

3.16.6 The plugin web interfa
e

Next to the publi
, team and jury web interfa
es, DOMjudge also provides a plugin web interfa
e. This

web interfa
e is still in beta/development so subje
t to
hange. The interfa
e provides
ontest data from

DOMjudge in XML format and is meant to provide external programs (plugins) with data on the
ontest.

This allows for all kinds of extensions beyond the
ore fun
tionality of DOMjudge su
h as providing a fan
y

s
oreboard with more statisti
s, aggregation of s
oreboard data for a �nal presentation during the prize

eremony.

As we are still thinking about possible uses and thus the data to be provided, the exa
t spe
i�
ation of this

interfa
e may
hange. Also, we are espe
ially interested in feedba
k and ideas.

There are
urrently two data-sets provided within the plugin subdire
tory of the DOMjudge web interfa
e,

both in XML format:

s
oreboard.php

This page provides a representation of the s
oreboard. Additionally it in
ludes legend tables for

problems, languages, a�liations and team
ategories. It does not a

ept any arguments.

event.php

This page provides a representation of events that happened during the
ontest, in
luding submissions,

judgings,
ontest state
hanges and general
lari�
ations. This page a

epts two arguments fromid

and toid to limit the output to events with event ID in that range.

CHAPTER 3. INSTALLATION AND CONFIGURATION 24

See these pages or the a

ompanying xsd-�les for the exa
t stru
ture.

A ni
e example plugin is DOMjura https://github.
om/ni
kygerritsen/DOMjura by Ni
ky Gerritsen.

This provides a graphi
al resolver of the s
oreboard from the freeze time until end of
ontest and
an be

used during the �nal prize
eremony. It is a reimplementation of the resolver made by Tim deBoer for the

ICPC World Finals.

3.17 Upgrading

There is some support to upgrade DOMjudge to newer versions. Note that this fun
tionality is not extensively

tested, so when you plan to upgrade, you are strongly advised to ba
kup the DOMjudge database and other

data before
ontinuing . We also advise to
he
k the ChangeLog �le for important
hanges.

Upgrading the �lesystem installation is probably best done by installing the new version of DOMjudge in a

separate pla
e and transferring the
on�guration settings from the old version.

There are SQL upgrade s
ripts to transform the database in
luding its data to the layout of a newer version.

The s
ripts
an be found under sql/upgrade and ea
h s
ript applies
hanges between two
onse
utive

DOMjudge versions. At the beginning of ea
h s
ript, a
he
k is performed whi
h will let MySQL bail out

with an error if it should not be applied anymore. Note that the s
ripts must be applied in order (sorted by

release). These s
ripts
an be applied by running dj-setup-database upgrade.

https://github.com/nickygerritsen/DOMjura

4 Setting up a
ontest

After installation is su

essful, you want to run your
ontest! Con�guring DOMjudge to run a
ontest (or a

number of them, in sequen
e) involves the following steps:

• Con�gure the
ontest data;

• Set up authenti
ation for teams;

• Supply in- and output testdata;

• Che
k that everything works.

4.1 Con�gure the
ontest data

DOMjudge stores and retrieves most of its data from the MySQL database. Some information must be �lled

in beforehand, other tables will be populated by DOMjudge.

You
an use the jury web interfa
e to add, edit and delete most types of data des
ribed below. It's advised to

keep a version of phpMyAdmin handy in
ase of emergen
ies, or for general database operations like import

and export.

This se
tion des
ribes the meaning of ea
h table and what you need to put into it. Tables marked with an

`x' are the ones you have to
on�gure with
ontest data before running a
ontest (via the jury web interfa
e

or e.g. with phpMyAdmin), the other tables are used automati
ally by the software:

auditlog Log of every state-
hanging event.

balloon Balloons to be handed out.

lari�
ation Clari�
ation requests/replies are stored here.

x
on�guration Runtime
on�guration settings.

x
ontest Contest de�nitions with start/end time.

event Log of events during
ontests.

judgehost Computers (hostnames) that fun
tion as judgehosts.

judging Judgings of submissions.

judging_run Result of one test
ase within a judging.

x language De�nition of allowed submission languages.

x problem De�nition of problems (name,
orresponding
ontest, et
.).

s
oreboard_jury Ca
he of the s
oreboards for publi
/teams and for the jury

s
oreboard_publi
 separately, be
ause of possibility of s
ore freezing.

submission Submission metadata of solutions to problems.

submission_�le Submitted
ode �les.

x team De�nition of teams.

x team_a�liation De�nition of institutions a team
an be a�liated with.

x team_
ategory Di�erent
ategory groups teams
an be put in.

team_unread Re
ords whi
h
lari�
ations are read by whi
h team.

x test
ase De�nition of testdata for ea
h problem.

Now follows a longer des
ription (in
luding �elds) per table that has to be �lled manually. As a general

remark: almost all tables have an identi�er �eld. Most of these are numeri
 and automati
ally in
reasing;

these do not need to be spe
i�ed. The tables language, problem, team, and team_affiliation have text

25

CHAPTER 4. SETTING UP A CONTEST 26

strings as identi�er �elds. These need to be manually spe
i�ed and only alpha-numeri
, dash and unders
ore

hara
ters are valid, i.e. a-z, A-Z, 0-9, -, _.

on�guration

This table
ontains
on�guration settings and is work in progress. These entries are simply stored as

name, value pairs.

ontest

The
ontests that the software will run. E.g. a test session and the live
ontest.

id is the referen
e ID and
ontestname is a des
riptive name used in the interfa
e.

a
tivatetime, starttime and endtime are required �elds and spe
ify when this
ontest is a
tive and

open for submissions. Optional freezetime and unfreezetime
ontrol s
oreboard freezing. For a

detailed treating of these, see se
tion 4.2 (Contest milestones).

The enabled �eld
an be unset to allow for easier editing of
ontest times, as disabled
ontests are not

he
ked to overlap with other
ontests. A disabled
ontest will also not be
ome a
tive.

language

Programming languages in whi
h to a

ept and judge submissions. langid is a string of maximum

length 8, whi
h referen
es the language; it is used internally as extension for sour
e �les and must

mat
h the �rst extension listed for the language in the LANG_EXTS setting in the
on�guration �les.

This referen
e is also used to
all the
orre
t
ompile s
ript (lib/judge/
ompile_
.sh, et
.), so when

adding a new language,
he
k that these mat
h.

name is the displayed name of the language; allow_submit determines whether teams
an submit using

this language; allow_judge determines whether judgehosts will judge submissions for this problem.

This
an for example be set to no to temporarily hold judging when a problem o

urs with the judging

of a spe
i�
 language; after resolution of the problem this
an be set to yes again.

time_fa
tor is the relative fa
tor by whi
h the timelimit is multiplied for solutions in this language.

For example Java is/was known to be stru
turally slower than C/C++.

problem

This table
ontains the problem de�nitions. probid is the referen
e ID,
id is the
ontest ID this

problem is (only) de�ned for: a problem
annot be used in multiple
ontests. name is the full name

(des
ription) of the problem.

allow_submit determines whether teams
an submit solutions for this problem. Non-submittable

problems are also not displayed on the s
oreboard. This
an be used to de�ne spare problems, whi
h

an then be added to the
ontest qui
kly; allow_judge determines whether judgehosts will judge

submissions for this problem. See also the explanation for language.

timelimit is the timelimit in se
onds within whi
h solutions for this problem have to run (taking into

a

ount time_fa
tor per language).

spe
ial_run if not empty de�nes a
ustom run program run_<spe
ial_run> to run
ompiled sub-

missions for this problem and spe
ial_
ompare if not empty de�nes a
ustom
ompare program

ompare_<spe
ial_
ompare> to
ompare output for this problem.

The
olor tag
an be �lled with a CSS
olour spe
i�
ation to asso
iate with this problem; see also

se
tion 6.2.1 (S
oreboard:
olours).

In problemtext a PDF, HTML or plain text do
ument
an be pla
ed whi
h allows team, publi
 and

jury to download the problem statement. Note that no additional �ltering takes pla
e, so HTML (and

PDF to some extent) should be from a trusted sour
e to prevent
ross site s
ripting or other atta
ks.

The �le type is stored in problemtext_type.

CHAPTER 4. SETTING UP A CONTEST 27

team

Table of teams: login is the a

ount/login-name of the team (whi
h is referen
ed to in other tables as

teamid) and name the displayed name of the team.
ategoryid is the ID of the
ategory the team is

in; affilid is the a�liation ID of the team.

authtoken is a generi
 �eld used by several of the supported authenti
ation me
hanisms to store a

pie
e of information it needs to identify the team. The
ontent of the �eld for ea
h of the me
hanisms

is:

• IPADDRESS: �eld
ontains the IP address of the team's workstation

• PHP_SESSIONS:
ontains a hash of the password that the team
an log in with

• LDAP:
ontains the LDAP name (e.g. CN)
orresponding to this DOMjudge user

When enabled is set to 0, the team immediately disappears from the s
oreboards and
annot use the

team web interfa
e anymore, even when already logged in. One use
ase
ould be to disqualify a team

on the spot.

members are the names of the team members, separated by newlines and room is the lo
ation or room

of the team, both for display only;
omments
an be �lled with arbitrary useful information and is

only visible to the jury. The timestamp teampage_first_visited and the hostname �eld indi
ate

when/whether/from where a team visited its team web interfa
e.

team_a�liation

affilid is the referen
e ID and name the name of the institution.
ountry should be the 3
hara
ter

ISO 3166-1 alpha-3 abbreviation of the
ountry and
omments is a free form �eld that is displayed in

the jury interfa
e.

Both for the
ountry and the a�liation, a logo
an be displayed on the s
oreboard. For this to work,

the affilid must mat
h a logo pi
ture lo
ated in www/images/affiliations/<affilid>.png and

ountry must mat
h a (�ag) pi
ture in www/images/
ountries/<
ountry>.png. All
ountry �ags

are present there, named with their 3-
hara
ter ISO
odes. See also www/images/
ountries/README.

If either �le is not present the respe
tive ID string will be printed instead.

team_
ategory

ategoryid is the referen
e ID and name is a string: the name of the
ategory. sortorder is the order

at whi
h this group must be sorted in the s
oreboard, where a higher number sorts lower and equal

sort depending on s
ore.

The
olor is again a CSS
olour spe
i�
ation used to dis
ern di�erent
ategories easily. See also se
tion

6.2.1 (S
oreboard:
olours).

The visible �ag determines whether teams in this
ategory are displayed on the publi
/team s
ore-

board. This feature
an be used to remove teams from the publi
 s
oreboard by assigning them to a

separate, invisible
ategory.

test
ase

The test
ase table
ontains testdata for ea
h problem; test
aseid is a unique identi�er, input and

output
ontain the test
ase input/output and md5sum_input, md5sum_output their respe
tive md5

hashes to
he
k for up-to-date-ness of
a
hed versions by the judgehosts. probid is the
orresponding

problem and rank determines the order of the test
ases for one problem. des
ription is an optional

des
ription for this test
ase. See also 4.4 (providing testdata).

CHAPTER 4. SETTING UP A CONTEST 28

4.2 Contest milestones

The
ontest table spe
i�es timestamps for ea
h
ontest that mark spe
i�
 milestones in the
ourse of the

ontest.

The triplet a
tivatetime, starttime and endtime de�ne when the
ontest runs and are required �elds (a
ti-

vatetime and starttime may be equal).

a
tivatetime is the moment when a
ontest �rst be
omes visible to the publi
 and teams (potentially repla
ing

a previous
ontest that was displayed before). Nothing
an be submitted yet and the problem set is not

revealed. Clari�
ations
an be viewed and sent.

At starttime, the s
oreboard is displayed and submissions are a

epted. At endtime the
ontest stops. New

in
oming submissions will be stored but not pro
essed; unjudged submissions re
eived before endtime will

still be judged.

freezetime and unfreezetime
ontrol s
oreboard freezing. freezetime is the time after whi
h the publi
 and

team s
oreboard are not updated anymore (frozen). This is meant to make the last stages of the
ontest

more thrilling, be
ause no-one knows who has won. Leaving them empty disables this feature. When using

this feature, unfreezetime
an be set to automati
ally `unfreeze' the s
oreboard at that time. For a more

elaborate des
ription, see also se
tion 6.2.3 (S
oreboard: freezing and defrosting).

The s
oreboard, results and
lari�
ations will remain to be displayed to team and publi
 after a
ontest,

until an a
tivatetime of a later
ontest passes.

All events happen at the �rst moment of the de�ned time. That is: for a
ontest with starttime "12:00:00"

and endtime "17:00:00", the �rst submission will be a

epted at 12:00:00 and the last one at 16:59:59.

The following ordering must always hold: a
tivatetime <= starttime < (freezetime <=) endtime (<=

unfreezetime). No two
ontests may have overlap: there's always at most one a
tive
ontest at any time.

4.3 Team authenti
ation

The authenti
ation system lets domserver know whi
h team it is dealing with. This system is modular,

allowing �exible addition of new methods, if required. The following methods are available by default for

team authenti
ation.

4.3.1 PHP session with passwords (default)

Ea
h team re
eives a password and PHP's session management is used to keep tra
k of whi
h team is logged

in. This method is easiest to setup. It does require the administrator to generate passwords for all teams

(this
an be done in the jury interfa
e) and distribute those, though. Also, ea
h team has to login ea
h time

they (re)start their browser. The password is stored in a salted MD5 hash in the authtoken �eld in database

(team table).

4.3.2 IP-address based

The IP-address of a team's workstation is used as the primary means of authenti
ation. The system assumes

that someone
oming from a spe
i�
 IP is the team with that IP listed in the team table. When a team

browses to the web interfa
e, this is
he
ked and the appropriate team page is presented.

This method has the advantage that teams do not have to login. A requirement for this method is that ea
h

team
omputer has a separate IP-address from the view of the domserver, though, so this is most suitable

CHAPTER 4. SETTING UP A CONTEST 29

for onsite
ontests and might not work with online
ontests if multiple teams are lo
ated behind a router,

for example. Furthermore, with this method the
ommand line submit
lient
an be used next to the web

interfa
e submit.

There are three possible ways of
on�guring team IP-addresses.

Supply it beforehand

Before the
ontest starts, when entering teams into the database, add the IP that ea
h team will have to

that team's entry in the authtoken �eld. When the teams arrive, everything will work dire
tly and without

further
on�guration (ex
ept when teams swit
h workpla
es). If possible, this is the re
ommended modus

operandi, be
ause it's the least hassle just before and during the
ontest.

Use one-time passwords

Supply the teams with a one time password with whi
h to authenti
ate. Beforehand, generate passwords for

ea
h team in the jury interfa
e. When the test session (or
ontest) starts and a team
onne
ts to the web

interfa
e and have an unknown IP, they will be prompted for username and password. On
e supplied, the

IP is stored and the password is removed and not needed anymore the next time.

This is also a se
ure option, but requires a bit more hassle from the teams, and maybe from the organisers

who have to distribute pie
es of paper.

Note: the web interfa
e will only allow a team to authenti
ate themselves on
e. If an IP is set, a next

authenti
ation will be refused (to avoid trouble with lingering passwords). In order to fully re-authenti
ate

a team, the IP address needs to be unset. You might also want to generate a new password for this spe
i�

team. Furthermore, a team must expli
itly
onne
t to the team interfa
e, be
ause with an unknown IP, the

root DOMjudge website will redire
t to the publi
 interfa
e.

Set IP upon �rst submission

This is only possible with the D (Dolstra proto
ol). The advantage is that no prior mapping needs to be

on�gured, but the disadvantage is that the team interfa
e
annot be viewed until at least one submission

was made; there are also more
onstraints on the system. See the se
tion on the Dolstra proto
ol for details.

The authtoken �eld in the database
ontains either the IP-address, or an MD5 hash of the one-time password

if this was set and the team has not authenti
ated yet.

4.3.3 Using an external LDAP server

This method
an be useful when you want to integrate DOMjudge into a larger system, or already have

redentials on an LDAP server available. The authtoken �eld in the database must
ontain the LDAP

username of the DOMjudge team. Furthermore, in et
/domserver-
onfig.php the LDAP_*
on�guration

settings must be adapted to your setup. Note that multiple (ba
kup) servers
an be spe
i�ed: they are

queried in order to try to su

essfully authenti
ate. After su

essful authenti
ation against the LDAP

server(s), PHP sessions are used to tra
k login into DOMjudge.

4.3.4 Fixed team authenti
ation

This method automati
ally authenti
ates ea
h
onne
tion to the team web interfa
e as a �xed,
on�gurable

team. This
an be useful for testing or demonstration purposes, but probably not for real use s
enario's.

CHAPTER 4. SETTING UP A CONTEST 30

4.3.5 Adding new authenti
ation methods

The authenti
ation system is modular and adding new authenti
ation methods is fairly easy. The authenti
a-

tion is handled in the �le lib/www/auth.team.php. Adding a new method amounts to editing the fun
tions

in that �le to handle your spe
i�

ase.

4.4 Providing testdata

Testdata is used to judge the problems: when a submission run is given the input testdata, the resulting

output is
ompared to the referen
e output data. If they mat
h exa
tly, the problem is judged to be

orre
t. For problems with a spe
ial
ompare s
ript, testdata should still be provided in the same way, but

the
orre
tness depends on the output of the
ustom
ompare s
ript. Please
he
k the do
umentation in

judge/
ompare_wrapper when using this feature.

The database has a separate table named test
ase, whi
h
an be manipulated from the web interfa
e. Under

a problem,
li
k on the test
ase link. There the �les
an be uploaded. The judgehosts
a
he a
opy based

on MD5 sum, so if you need to make
hanges later, re-upload the data in the web interfa
e and it will

automati
ally be pi
ked up.

Testdata
an also be imported into the system from a zip-bundle on ea
h problem webpage. Ea
h pair of

�les <path-to-file>/<filename>.in and
orresponding *.out found in the zip-bundle will be added as

testdata. Furthermore, when the �le domjudge-problem.ini exists, then problem properties are read from

that �le in INI-syntax. All keys from the problem table are supported, so an example
ontents
ould be:

probid = hello

name = Hello world!

allow_submit=false

olor=blue

Test
ases will be added to those already present and imported properties will overwrite those in the database.

A
ompletely new problem
an also be imported from a zip-bundle on the problems overview webpage; in

that
ase, note that if the �le domjudge-problem.ini is not present, a default value is
hosen for the

unmodi�able primary key probid (as well as for the other keys). It is possible to upload multiple zip �les

in one go, ea
h of whi
h will be added as a separate problem.

4.5 Start the daemons

On
e everything is
on�gured, you
an start the daemons. They all run as a normal user on the system.

The needed root privileges are gained through sudo only when ne
essary.

• One or more judgedaemons, one on ea
h judgehost;

• Optionally the balloon noti�
ation daemon.

4.6 Che
k that everything works

If the daemons have started without any problems, you've
ome a long way! Now to
he
k that you're ready

for a
ontest.

CHAPTER 4. SETTING UP A CONTEST 31

First, go to the jury interfa
e: http://www.your-domjudge-lo
ation/jury. Look under all the menu items

to see whether the displayed data looks sane. Use the
on�g-
he
ker under `Admin Fun
tions' for some sanity

he
ks on your
on�guration.

Go to a team workstation and see if you
an a

ess the team page and if you
an submit solutions.

Next, it is time to submit some test solutions. If you have the default Hello World problem enabled, you
an

submit some of the example sour
es from under the do
/examples dire
tory. They should give `CORRECT'.

You
an also try some (or all) of the sour
es under tests. Use make
he
k to submit a variety of tests; this

should work when the submit
lient is available and the default example problems are in the a
tive
ontest.

There's also make stress-test, but be warned that these tests might
rash a judgedaemon. The results

an be
he
ked in the web interfa
e; ea
h sour
e �le spe
i�es the expe
ted out
ome with some explanations.

For
onvenien
e, there is a link judging veri�er in the admin web interfa
e; this will automati
ally
he
k

whether submitted sour
es from the tests dire
tory were judged as expe
ted. Note that a few sour
es have

multiple possible out
omes: these must be veri�ed manually.

When all this worked, you're quite ready for a
ontest. Or at least, the pra
ti
e session of a
ontest.

4.7 Testing jury solutions

Before running a real
ontest, you and/or the jury will want to test the jury's referen
e solutions on the

system.

There is no spe
ial feature for testing their solutions under DOMjudge. The simplest approa
h is to submit

these solutions as a spe
ial team. This method requires a few steps and some
arefulness to prevent a

possible information leak of the problemset. It is assumed that you have
ompletely
on�gured the system

and
ontest and that all testdata is provided. To submit the jury solutions the following steps have to be

taken:

•
hange the
ontest time to make the
ontest
urrently a
tive;

• setup a spe
ial team at a lo
al
omputer;

• submit the jury solutions as that team;

•
he
k that all solutions are judged as expe
ted in the jury interfa
e;

• revert the
ontest to the original times.

Note that while the
ontest time is
hanged to the
urrent time, anyone might be able to a

ess the publi

or team web-interfa
e: there's not too mu
h there, but on the s
oreboard the number of problems and their

titles
an be read. To prevent this information leak, one
ould dis
onne
t the DOMjudge server, judgehosts

and the
omputer used for submitting from the rest of the network.

Furthermore, you should make sure that the team you submit the solutions as, is in a
ategory whi
h is set

to invisible, so that it doesn't show up on the publi
 and team s
oreboard. The sample team "DOMjudge"

ould be used, as it is in the "Organisation"
ategory, whi
h is not visible by default.

5 Team Workstations

Here's a qui
k
he
klist for
on�guring the team workstations. Of
ourse, when hosting many teams, it

makes sense to generate a pre
on�gured a

ount that has these features and
an be distributed over the

workstations.

1. The
entral tool teams use to intera
t with DOMjudge is the web browser.

• If possible, set the Home Page to your.domjudge.lo
ation/team/

• Go to the team page and
he
k if this team is
orre
tly identi�ed.

• If using https and a self signed
erti�
ate, add this
erti�
ate to the browser
erti�
ate list to

prevent annoying dialogs.

2. Make sure
ompilers for the supported languages are installed and working.

3. Provide teams with the
ommand line submit
lient and
he
k that it works.

4. Make the sample in- and output data from the problem set available.

5. Add your SSH key to their authorized_keys �le, so you
an always a

ess their a

ount for wiping and

emergen
ies.

6. Che
k that internet a

ess is blo
ked.

32

6 Web interfa
e

The web interfa
e is the main point of intera
tion with the system. Here you
an view submissions
oming

in,
ontrol judging, view the standings and edit data.

6.1 Jury and Administrator view

The jury interfa
e has two possible views: one for jury members, and one for DOMjudge administrators.

The se
ond view is the same as the jury view, but with more features added. Whi
h to show is de
ided by

using the HTTP authenti
ation login used to a

ess the web interfa
e; you
an list whi
h HTTP users are

admin with the variable DOMJUDGE_ADMINS in et
/domserver-
onfig.php.

This separation is handy as a matter of se
urity (jury members
annot (a

identally) modify things that

shouldn't be) and
larity (jury members are not
onfused / distra
ted by options they don't need).

Options o�ered to administrators only:

• Adding and editing any
ontest data

• Managing team passwords

• The
on�g
he
ker

• Refreshing the s
oreboard & hostname
a
hes

• Rejudge '
orre
t' submissions

• Restart 'pending' judgings

Furthermore, some qui
k link menu items might di�er a

ording to usefulness for jury or admins.

A note on rejudging: it is poli
y within the DOMjudge system that a
orre
t solution
annot be reverted

to in
orre
t. Therefore, administrator rights are required to rejudge
orre
t or pending (hen
e, possibly

orre
t) submissions. For some more details on rejudging, see the jury manual.

6.2 The s
oreboard

The s
oreboard is the
anoni
al overview for anyone interested in the
ontest, be it jury, teams or the general

publi
. It deserves to get a se
tion of its own.

6.2.1 Colours and sorting

Ea
h problem
an be asso
iated with a spe
i�

olour, e.g. the
olour of the
orresponding balloon that is

handed out. DOMjudge
an display this
olour on the s
oreboard, if you �ll in the `
olor' attribute in the

`problem' table; set it to a valid CSS
olour value (e.g. `green' or `#�0000', although a name is preferred for

displaying
olour names).

It's possible to have di�erent
ategories of teams parti
ipating, this is
ontrolled through the `team_
ategory'

table. Ea
h
ategory has its own ba
kground
olour in the s
oreboard. This
olour
an be set with the `
olor'

attribute to a valid CSS
olour value.

33

CHAPTER 6. WEB INTERFACE 34

If you wish, you
an also de�ne a sortorder in the
ategory table. This is the �rst �eld that the s
oreboard is

sorted on. If you want regular teams to be sorted �rst, but after them you want to sort both spe
tator- and

business teams equally, you de�ne `0' for the regular
ategory and `1' for the other
ategories. To
ompletely

remove a
ategory from the publi
 (but not the jury) s
oreboard, the
ategory visible �ag
an be set to `0'.

6.2.2 Starting and ending

The displayed s
oreboard will always be that of the most re
ently started
ontest. The s
oreboard is never

displayed for a
ontest that still has to start. In other words, the s
ores will be
ome visible on the �rst

se
ond of a
ontest start time.

When the
ontest ends, the s
ores will remain to be displayed, until a next
ontest starts.

6.2.3 Freezing and defrosting

DOMjudge has the option to `freeze' the publi
- and team s
oreboards at some point during the
ontest.

This means that s
ores are no longer updated and remain to be displayed as they were at the time of the

freeze. This is often done to keep the last hour interesting for all. The s
oreboard freeze time
an be set

with the `freezetime' attribute in the
ontest table.

The s
oreboard freezing works by looking at the time a submission is made. Therefore it's possible that

submissions from (just) before the freezetime but judged after it
an still
ause updates to the publi

s
oreboard. A rejudging during the freeze may also
ause su
h updates.

If you do not set any freeze time, this option does nothing. If you set it, the publi
 and team s
oreboards will

not be updated anymore on
e this time has arrived. The jury will however still see the a
tual s
oreboard.

On
e the
ontest is over, the s
ores are not dire
tly `unfrozen'. This is done to keep them se
ret until e.g.

the prize
eremony. You
an release the �nal s
ores to team and publi
 interfa
es when the time is right.

You
an do this either by setting a prede�ned `unfreezetime' in the
ontest table, or you push the `unfreeze

now' button in the jury web interfa
e, under
ontests.

6.2.4 Cli
kability

Almost every
ell is
li
kable in the jury interfa
e and gives detailed information relevant to that
ell. This

is (of
ourse) not available in the team and publi
 s
oreboards, ex
ept that in the team and publi
 interfa
e

the team name
ell links to a page with some more information and optionally a team pi
ture.

6.2.5 Ca
hing

The s
oreboard is not re
al
ulated on every page load, but rather
a
hed in the database. It should be safe

for repeated reloads from many
lients. In ex
eptional situations (should never o

ur in normal operation,

e.g. a bug in DOMjudge), the
a
he may be
ome ina

urate. The jury administrator interfa
e
ontains an

option to re
al
ulate a fresh version of the entire s
oreboard. You should use this option only when a
tually

ne
essary, sin
e it puts quite a load on the database.

6.2.6 Exporting to an external website

In many
ases you might want to
reate a
opy of the s
oreboard for external viewing from the internet. The

ommand bin/stati
_s
oreboard is provided just for that. It writes to stdout a version of the s
oreboard

CHAPTER 6. WEB INTERFACE 35

with refresh meta-tags and links to team pages removed. This
ommand
an for example be run every

minute and the output be pla
ed as stati

ontent on a publi
ly rea
hable webserver.

6.3 Balloons

In many
ontests balloons are handed out to teams that solve a parti
ular problem. DOMjudge
an help

in this pro
ess: both a web interfa
e and a noti�
ation daemon are available to notify that a new balloon

needs to be handed out. Note that only one should be used at a time.

The web based tool is rea
hable from the main page in the jury interfa
e, where ea
h balloon has to be

he
ked o� by the person handing it out.

For the daemon, set the BALLOON_CMD in bin/balloons to de�ne how noti�
ations are sent. Examples

are to mail to a spe
i�
 mailbox or to send prints to a printer. When
on�gured, start bin/balloons and

noti�
ation will start.

Noti�
ations will stop as soon as the s
oreboard is frozen. Enable the show_balloons_postfreeze to keep

issuing balloon noti�
ations after the freeze.

7 Se
urity

This judging system was developed with se
urity as one of the main goals in mind. To implement this

rigorously in various aspe
ts (restri
ting team a

ess to others and the internet, restri
ting a

ess to the

submitted programs on the domjudge systems, et
...) requires root privileges to di�erent parts of the whole

ontest environment. Also, se
urity measures might depend on the environment. Therefore we have de
ided

not to implement se
urity measures whi
h are not dire
tly related to the judging system itself. We do have

some suggestions on how you
an setup external se
urity.

7.1 Considerations

Se
urity
onsiderations for a programming
ontest are a bit di�erent from those in normal
onditions: nor-

mally users only have to be prote
ted from deliberately harming ea
h other. During a
ontest we also have

to restri
t users from
ooperatively
ommuni
ating, a

essing restri
ted resour
es (like the internet) and

restri
t user programs running on judgehosts.

We expe
t that
han
es are small that people are trying to
heat during a programming
ontest: you have

to ha
k the system and make use of that within very limited time. And you have to not get
aught and

disquali�ed afterwards. Therefore passive se
urity measures of warning people of the
onsequen
es and only

he
k (or probe) things will probably be enough.

However we wanted the system to be as se
ure as possible within reason. Furthermore this software is open

sour
e, so users
an try to �nd weak spots before the
ontest.

7.2 Internal se
urity

Internal se
urity of the system relies on users not being able to get to any vital data (jury input/output and

users' solutions). Data is stored in two pla
es: in �les on the DOMjudge system a

ount and in the SQL

database.

Files should be prote
ted by restri
ting permission to the relevant dire
tories. Database a

ess is prote
ted

by passwords. The default permissions allow
onne
tions from all hosts, so make sure you restri
t this

appropriately or
hoose strong enough passwords.

Note: the database password is stored in et
/dbpasswords.se
ret. This �le has to be non-readable to

teams, but has to be readable to the web server to let the jury web interfa
e work. A solution is to make it

readable to a spe
ial group the web server runs as. This is done when using the default
on�guration and

installation method and when make install-{domserver,judgehost} is run as root. The webserver group

an be set with
onfigure �with-webserver-group=GROUP whi
h defaults to www-data.

Judgehosts and the domserver
ommuni
ate with ea
h other through the MySQL proto
ol. By default,

MySQL does not en
rypt these
onne
tions. Refer to the MySQL manual to
on�gure SSL for the server

and enable the option in
ommon-
on�g.php to enable it for
lient
onne
tions; alternatively you
an employ

an SSH tunnel or ensure in the network setup that these
onne
tions are separated from the team network.

The jury web interfa
e is prote
ted by HTTP Authenti
ation. These
redentials are essentially sent plain-

text, so we advise to setup HTTPS at least for the jury interfa
e, but preferably for all web interfa
es. By

default the domjudge_jury user will be given full a

ess. You
an
hoose to add more users to the �le

et
/htpasswd-jury. In et
/domserver-
onfig.php you
an add these users to the list DOMJUDGE_ADMINS.

36

CHAPTER 7. SECURITY 37

Most data-modi�
ation fun
tions are restri
ted to only users in this list. See also the judge manual for some

more details.

Se
ondly, the submitted sour
es should not be inter
eptable by other teams (even though that, if these would

be sent
lear-text, a team would normally need to be root/administrator on their
omputer to inter
ept this).

This
an be a

omplished by using HTTPS for the web interfa
e. The D (Dolstra submission method) by

default uses SSH to send �les over the network.

There are multiple authenti
ation methods for teams, ea
h having its own issues to
he
k for.

When using IP address authenti
ation, one has to be
areful that teams are not able to spoof their IP (for

whi
h they normally need root/administrator privileges), as they would then be able to view other teams'

submission info (not their
ode) and
lari�
ations and submit as that team. Note: This means that
are has

to be taken e.g. that teams
annot simply login onto one another's
omputer and spoof their identity.

When using PHP sessions or LDAP, authenti
ation data is sent via HTTP, so we strongly advise to use

HTTPS in that
ase.

Problem texts
an be uploaded to DOMjudge. No �ltering is performed there, so make sure they are from

trusted sour
es to, in the
ase of HTML, prevent
ross site s
ripting
ode to be inje
ted.

7.3 Root privileges

A di�
ult issue is the se
uring of submitted programs run by the jury. We do not have any
ontrol over

these sour
es and do not want to rely on
he
king them manually or �ltering on things like system
alls

(whi
h
an be obs
ured and are di�erent per language).

Therefore we de
ided to ta
kle this issue by running these programs in a environment as restri
tive as possible.

This is done by setting up a minimal
hroot environment. For this, root privileges on the judgehosts and

stati
ally
ompiled programs are needed. By also limiting all kinds of system resour
es (memory, pro
esses,

time, unprivileged user) we prote
t the system from programs whi
h try to ha
k or
ould
rash the system.

However, a
hroot environment does not restri
t network a

ess, so there lies a possible se
urity risk that

has to be handled separately.

7.4 File system privileges

Of
ourse you must make sure that the �le system privileges are set su
h that there's no unauthorised

a

ess to sensitive data, like submitted solutions or passwords. This is quite system dependent. At least

<judgehost_judgedir> should not be readable by other users than DOMjudge.

7.4.1 Permissions for the web server

The default installation sets permissions
orre
tly for the web server user (
ommonly www-data). The

following information is for those who want to verify the setup or make modi�
ations to the settings.

Care should be taken with the et
 dir: the domserver-{
onfig,stati
}.php, htpasswd-* and

dbpasswords.se
ret �les should all be readable, but dbpasswords.se
ret and the htpasswd �les should

not be readable by anyone else. This
an be done for example by setting the et
 dire
tory to owner:group

<DOMjudge a

ount>:<Web server group> and permissions drwxr-x�-, denying users other than yourself

and the web server group a

ess to the
on�guration and password �les.

If you want the web server to also store in
oming submission sour
es on the �le system (next to the database),

then <domserver_submitdir> must be writable for the web server, see also 3.9 (submission methods).

CHAPTER 7. SECURITY 38

You should take
are not to serve any �les over the web that are not under the DOMjudge 'www/' dire
tory,

be
ause they might
ontain sensitive data (e.g. those under et
/). DOMjudge
omes with .hta

ess �les

that try to prevent this, but double-
he
k that it's not a

essible.

7.5 External se
urity

The following se
urity issues are not handled by DOMjudge, but left to the administrator to set up.

Network tra�
 between team
omputers, domserver and the internet should be limited to what is allowed.

Possible ways of enfor
ing this might be: monitor tra�
, modify �rewall rules on team
omputers or (what

we implemented with great satisfa
tion) put all team
omputers behind a �rewalling router.

Solutions are run within a restri
ted (
hroot) environment on the judgehosts. This however does not restri
t

network a

ess, so a team
ould try to send in a solution that tries to send input testdata ba
k to them,

a

ess the internet, et
... A solution to this problem is to disallow all network tra�
 for the test user on the

judgehosts. On Linux, this
an be a

omplished by modifying the iptables, adding a rule like:

iptables -I OUTPUT -m owner --uid-owner <testuser_uid> -j REJECT

A Common problems and their

solutions

A.1 Java
ompilers and the
hroot

Java is di�
ult to deal with in an automati
 way. It is probably most preferable to use Ora
le (previously

Sun) Java, be
ause that's the version
ontestants will be used to. The GNU Compiler for Java (GCJ) is

easier to deal with but may la
k some features.

With the default
on�guration, submitted programs are run within a minimal
hroot environment. For this

the programs have to be stati
ally linked, be
ause they do not have a

ess to shared libraries.

For most languages
ompilers support this, but for Java, this is a bit problemati
. The Ora
le Java
ompiler

`java
' is not a real
ompiler: a byte
ode interpreter `java' is needed to run the binaries and thus this
annot

simply run in a
hroot environment.

There are some options to support Java as a language:

1. One
an build a bigger
hroot environment whi
h
ontains all ne
essary ingredients to let Java work

within it. DOMjudge supports this with some manual setup.

First of all, a
hroot tree with Java support must be
reated. The s
ript bin/dj_make_
hroot
reates

one from Debian GNU/Linux sour
es; run that s
ript without arguments for basi
 usage information.

Next, edit the s
ript lib/judge/
hroot-startstop.sh and adapt it to work with your lo
al system

and un
omment the s
ript in et
/judgehost-
onfig.php.

2. As an alternative the g
j
ompiler from GNU
an be used instead of Ora
le's version. This one

generates true ma
hine
ode and
an link stati
ally. However a few fun
tion
alls
annot be linked

stati
ally (see `GCJ
ompiler warnings' in this FAQ). Se
ondly, the stati
 library libg
j.a doesn't

seem to be in
luded in all GNU/Linux distributions: at least not in RedHat Enterprise Linux 4.

3. One
an disable the
hroot environment in et
/judgehost-
onfig.php by disabling USE_CHROOT.

Disabling the
hroot environment removes this layer of se
urity against submissions that attempt to

heat, but it is a simple solution to getting Java to work, for demo or testing purposes. No guarantees

about system se
urity
an be made when running a
ontest with
hroot disabled.

A.2 The Java virtual ma
hine (jvm) and memory limits

DOMjudge imposes memory limits on submitted solutions. These limits are imposed before the
ompiled

submissions are started. On the other hand, the Java virtual ma
hine is started via a
ompile-time generated

s
ript whi
h is run as a wrapper around the program. This means that the memory limits imposed by

DOMjudge are for the jvm and the running program within it. As the jvm uses approximately 300MB, this

redu
es the limit by this signi�
ant amount. See judge/
ompile_java_java
.sh for the implementation

details.

If you see error messages of the form

Error o

urred during initialization of VM

java.lang.OutOfMemoryError: unable to
reate new native thread

39

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 40

or

Error o

urred during initialization of VM

Could not reserve enough spa
e for obje
t heap

Then the problem is probably that the jvm needs more memory than what is reserved by the Java
ompile

s
ript. You should try to in
rease the MEMRESERVED variable in judge/
ompile_java.sh and
he
k that

the
on�guration variable memory limit is set larger than MEMRESERVED. If that does not help, you should

try to in
rease the
on�guration variable pro
ess limit (sin
e the JVM uses a lot of pro
esses for garbage

olle
tion).

A.3 Java
lass naming

Java requires a spe
i�
 naming of the main
lass. When de
laring the main
lass publi
, the �lename must

mat
h the
lass name. Therefore one should not de
lare the main
lass publi
; from experien
e however,

many teams do so. Se
ondly, the Java
ompiler generates a byte
ode �le depending on the
lass name. There

are two ways to handle this.

The simplest Java
ompile s
ript
ompile_java_java
.sh requires the main
lass to be named Main with

method

publi
 stati
 void main(String args[℄)

The alternative (and default) is to use the s
ript
ompile_java_java
_dete
t.sh, whi
h automati
ally

dete
ts the main
lass and even
orre
ts the sour
e �lename when it is de
lared publi
.

When using the GNU g
j
ompiler, the same holds and two similar s
ripts
ompile_java_g
j.sh and

ompile_java_g
j_dete
t.sh are available.

A.4 GCJ
ompiler warnings

When using the GNU GCJ
ompiler for
ompiling Java sour
es, it
an give a whole lot of warning messages

of the form

/usr/lib/g

-lib/i386-linux/3.2.3/libg
j.a(g
_dlopen.o)(.text+0xb
):

In fun
tion `GC_dlopen': Using 'dlopen' in stati
ally linked

appli
ations requires at runtime the shared libraries from the glib

version used for linking

These are generated be
ause you are trying to
ompile stati
ally linked sour
es, but some fun
tions
an not

be stati
, e.g. the `dlopen' fun
tion above. These are warnings and
an be safely ignored, be
ause under

normal programming
ontest
onditions people are not allowed to use these fun
tions anyway (and they are

not a

essible within the
hroot-ed environment the program is run in).

To �lter these warnings, take a look at judge/
ompile_java_g
jmod.sh and repla
e or symlink

judge/
ompile_java.sh by/to this �le.

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 41

A.5 Error: `submit_
opy.sh failed with exit
ode XX'

This error
an have various
auses. First of all:
he
k the submit.log �le for more
omplete error messages.

Assuming the default
on�guration where submit_
opy.sh uses `s
p', we have found that shell initialisation

s
ripts might
ontain statements whi
h generate errors: s
p runs the user's default shell when
opying

submission �les and when the shell dies (e.g. be
ause of not having a terminal), the
opying fails.

Another
ause might be that you do not have automati
 a

ess to the team's a

ount (e.g. using ssh keys).

A.6 C#/mono support

Using the mono
ompiler and runtime for C# gives rise to similar problems as with Java. Although the C#

language has been added to DOMjudge, there's no support yet to run it within a
hroot environment. So in

that
ase, USE_CHROOT must be disabled.

A.7 Memory limit errors in the web interfa
e

When uploading large testdata �les, one
an run into an error in the jury web interfa
e of the form:

Fatal error: Allowed memory size of XX bytes exhausted (tried to

allo
ate YY bytes) in /home/domjudge/system/lib/lib.database.php

on line 154

This means that the PHP engine has run out of memory. The solution is to raise the memory limits for PHP.

This
an be done by either editing et
/apa
he.
onf and raising the memory_limit, upload_max_filesize

and post_max_size values to well above the size of your largest test
ase. You
an
hange these parameters

under the jury dire
tory or by dire
tly editing the global Apa
he or php.ini
on�guration. Note also that

max_file_uploadsmust be larger than the maximum number of test
ases per problem to be able to upload

and edit these in the web interfa
e.

The optional PHP Suhosin module may also impose additional limits;
he
k your error logging to see if these

are triggered. You may also need to raise MySQL's max_allowed_pa
ket parameter in /et
/mysql/my.
nf

on both server and
lient.

A.8 Compiler errors: `runguard: root privileges not dropped'

Compiling failed with exit
ode 255,
ompiler output:

/home/domjudge/system/bin/runguard: root privileges not dropped

When the above error o

urs on submitting any sour
e, this indi
ates that you are running the judgedaemon

as root user. You should not run any part of DOMjudge as root; the parts that require it will gain root by

themselves through sudo. Either run it as yourself or, probably better,
reate dedi
ated a user domjudge

under whi
h to install and run everything.

Also do not
onfuse this with the domjudge-run user: this is a spe
ial user to run submissions as and should

also not be used to run normal DOMjudge pro
esses; this user is only for internal use.

B Multi-site
ontests

This manual assumed you are running a singe-site
ontest; that is, the teams are lo
ated
losely together,

probably in a single physi
al lo
ation. In a multi-site or distributed
ontest, teams from several remote

lo
ations use the same DOMjudge installation. An example is a national
ontest where teams
an parti
ipate

at their lo
al institution.

DOMjudge supports su
h a setup on the
ondition that a
entral installation of DOMjudge is used to whi
h

the teams
onne
t over the internet. It is here where all submission pro
essing and judging takes pla
e.

Be
ause DOMjudge uses a web interfa
e for all intera
tions, teams and judges will interfa
e with the system

just as if it were lo
al. Still, there are some spe
i�

onsiderations for a multi-site
ontest.

Network: there must be a relatively reliable network
onne
tion between the lo
ations and the
entral

DOMjudge installation, be
ause teams
annot submit or query the s
oreboard if the network is down.

Be
ause of travelling an unse
ured network, you may want to
onsider HTTPS for en
rypting the tra�
. If

you want to limit internet a

ess, it must be done in su
h a way that the remote DOMjudge installation
an

still be rea
hed.

Team authenti
ation: the IP-based authenti
ation will still work as long as ea
h team workstation has a

di�erent publi
 IP address. If some teams are behind a NAT-router and thus all present themselves to

DOMjudge with the same IP-address, another authenti
ation s
heme must be used (e.g. PHP sessions).

Judges: if the people reviewing the submissions will be lo
ated remotely as well, it's important to agree

beforehand on who-does-what, using the submissions
laim feature and how responding to in
oming
lari�-

ation requests is handled. Having a shared
hat/IM
hannel may help when unexpe
ted issues arise.

S
oreboard: by default DOMjudge presents all teams in the same s
oreboard. Per-site s
oreboards
an be

implemented either by using team
ategories or team a�liations in
ombination with the s
oreboard �ltering

option.

42

C DOMjudge and the ICPC validator

interfa
e standard

DOMjudge supports the ICPC validator interfa
e standard, whi
h
an be found at:

http://www.e
s.
sus.edu/p
2/do
/valistandard.html

As short summary, this interfa
e standard
onsists of two parts: the invo
ation and the result interfa
e.

The invo
ation interfa
e spe
i�es that a validator must be
alled as a separate exe
utable with at least four

ommand line parameters:

/path/to/validator <input_data> <program_output> <referen
e_output> \

<result_file> [<extra_options>...℄

The result interfa
e spe
i�es that result_file should be a valid XML do
ument
ontaining a root element

<result out
ome="string1"> string2 </result>

where string1 is the result reported to the judging system and a value "a

epted" indi
ates a
orre
t result.

The invo
ation
ode (judge/test
ase_run.sh) adheres to the invo
ation interfa
e. It passes as a 5th

optional parameter to the validator program the �lename in whi
h it expe
ts a di�eren
e output between

the program and jury output (parameters 2 and 3 respe
tively).

Parsing of the result XML �le (in the result interfa
e) is done with the `xsltpro
' program, whi
h is part of

the

GNOME libxslt pa
kage http://www.xmlsoft.org/XSLT/ . The exit
ode of the validator program should be

zero, otherwise an internal error is generated.

DOMjudge
urrently has two validator s
ripts: judge/
ompare and judge/
ompare_wrapper. The �rst does

a
ompare with a plain di�, the se
ond s
ript
alls an external program for
he
king (e.g. judge/
he
k_float

for
omparison of �oating point results). When passed a 5th parameter, this is interpreted as a �lename

to whi
h these s
ripts will write a
omparison of the program and jury output. Both s
ripts also generate

XML
ompliant output, whi
h is written to the result �le spe
i�ed in parameter 4 and fully
omplies with

the validator standard.

43

http://www.ecs.csus.edu/pc2/doc/valistandard.html
http://www.xmlsoft.org/XSLT/

D Submitdaemon and the Dolstra

proto
ol

In the default situation, teams
an submit their solutions either via browsing to the web interfa
e, or by

using the
ommand line submit
lient, whi
h behind the s
enes employs the same web interfa
e to a
tually

make the submission. This setup su�
es for many environments.

The Dolstra proto
ol is di�erent in that it uses a submitdaemon running on the domserver. One advantage

is that submissions
an be made before the IP address of the team is known. This authenti
ation is forti�ed

by the following pro
ess. When a
lient
onne
ts, it does not send the submission �le, but only a referen
e

to a randomised and not publi
ly visible �le. This �le is then
opied from server side with the submit_
opy

s
ript. This makes it impossible for teams to spoof a submission for a di�erent team: the server `
alls ba
k'

the team the submitter identi�ed himself as and
he
ks for existen
e of the advertised �le. Be
ause �lenames

are randomised and invisible (within the $HOME/.domjudge dire
tory by default), it is also impossible for

someone to guess another team's �lename and submit it for them.

The �gure below is a graphi
al representation of the �ow of a submission. Arrows with �lled lines indi
ate

the �ow of the submission �le, while dot-dash lines indi
ate �ow of metadata about the submission. Ea
h

line where no proto
ol of data transfer is given, are just �le system operations. Squares are programs and

rounded squares are storage lo
ations.

webbrowser webserver

submit client

Filesystem

submitdaemon submit_db

TMPDIR

Database

Filesystem

~/.domjudge submit_copy

http(s)

scp

exec
dolstra

choice

http(s)choice

Team Jury

exec

Figure D.1: Submission �ow diagram in
luding Dolstra proto
ol.

To have DOMjudge
on�gure the IP upon �rst submission in this way, set option STRICTIPCHECK to 0. In

that
ase, we start out without IP's (and the web interfa
e will not be a

essible), but as soon as a team

onne
ts with the
ommand line submit
lient to the submitdaemon, they are authenti
ated by
orre
tly

submitting a �le and the IP is registered and everything works as normal.

The
onne
t
an happen during the test session, so during the real
ontest everything is fully available.

This is a se
ure way of authenti
ating teams, whi
h requires no passwords or IP
on�guration, but teams

must submit via the
ommand line submit
lient to the
ommand line daemon before they
an a

ess their

teampage.

44

APPENDIX D. SUBMITDAEMON AND THE DOLSTRA PROTOCOL 45

D.1 Dolstra proto
ol requirements

If you want to use the Dolstra submit method (next to / instead of the HTTP fun
tionality) you need to

satisfy the following requirements.

The submitdaemon needs to run at the domserver, and re
eive
onne
tions on a
on�gurable TCP port,

default 9147.

Team a

ounts need to be a

essible via SSH on the domserver (a SSH publi
 key of the DOMjudge system

a

ount should be installed on all team a

ounts to provide key-based a

ess), and a shared �lesystem (e.g.

NFS) is needed between the team
omputers and the domserver. Alternatively, another means of providing

a

ess from the server
an be
on�gured, see the �le submit/submit_
opy.sh for more details.

To build the
ommand line
lient under Windows, you need to have at least Windows XP and
ygwin version

1.7 for support of the
omplete netdb.h headers.

E Developer information

This se
tion
ontains instru
tions spe
i�
ally for those wishing to modify the DOMjudge sour
e. If you have

any questions about developing DOMjudge, or if you want to share your
hanges that may be useful to

others, please don't hesitate to
onta
t us through our development mailing list .

E.1 Bootstrapping from Git repository sour
es

The installation steps in this do
ument assume that you are using a downloaded tarball from the DOMjudge

website. If you want to install from Git repository sour
es, be
ause you want to use the bleeding edge
ode

or
onsider to send a pat
h to the developers, the
on�gure/build system �rst has to be bootstrapped.

This requires additional software to be installed:

• The GNU auto
onf/automake toolset

• Flex and bison
++ for generating the parsing
ode of the optional
he
ktestdata s
ript.

• Linuxdo
, gro� and X�g/trans�g to build the admin and judge do
umentation from SGML sour
es

and a LaTeX installation to generate the PDF admin, judge and default team manual.

On Debian(-based) systems, the following apt-get
ommand should install the additionally required pa
kages

(next to the 3.2 (standard set of pa
kages)):

apt-get install auto
onf automake flex bison
++

When this software is present, bootstrapping
an be done by running make dist, whi
h
reates the

onfigure s
ript and generates do
umentation from SGML/LaTeX sour
es.

E.2 Maintainer mode installation

Besides the two modes of installation des
ribed in se
tion 3.3 (Installation system), DOMjudge provides a

spe
ial maintainer mode installation. This method does an in-pla
e installation within the sour
e tree. This

allows one to immediately see e�e
ts when modifying
ode.

This method requires some spe
ial steps whi
h
an most easily be run via make�le rules as follows:

make maintainer-
onf [CONFIGURE_FLAGS=<extra options for ./
onfigure>℄

make maintainer-install

Note that these targets have to be exe
uted separately and they repla
e the steps des
ribed in the se
tion

3.3 (Installation system); also no �prefix �ag or other dire
toriess have to be spe
i�ed to
onfigure.

E.3 Make�le stru
ture

The Make�les in the sour
e tree use a re
ursion me
hanism to run make targets within the relevant sub-

dire
tories. The re
ursion is handled by the REC_TARGETS and SUBDIRS variables and the re
ursion step is

46

APPENDIX E. DEVELOPER INFORMATION 47

exe
uted in Makefile.global. Any target added to the REC_TARGETS list will be re
ursively
alled in all

dire
tories in SUBDIRS. Moreover, a lo
al variant of the target with -l appended is
alled after re
ursing into

the subdire
tories, so re
ursion is depth-�rst.

The targets dist,
lean, dist
lean, maintainer-
lean are re
ursive by default, whi
h means that these

all their lo
al -l variants in all dire
tories
ontaining a Make�le. This allows for true depth-�rst traversal,

whi
h is ne
essary to
orre
tly run the *
lean targets: otherwise e.g. paths.mk will be deleted before

subdire
tory *
lean targets are
alled that depend on information in it.

	DOMjudge overview
	Features
	Requirements
	Copyright and licencing
	Contact

	Contest planning
	Contest hardware
	Requirements

	Installation and configuration
	Quick installation
	Prerequisites
	Installation system
	Configuration
	Configuration of languages
	Configuration of special run and compare programs
	Alerting system
	Other configurable scripts
	Submission methods
	Database installation
	Web server configuration
	Logging & debugging
	Installation of a judgehost
	Building and installing the submit client
	(Re)generating documentation and the team manual
	Optional features
	Upgrading

	Setting up a contest
	Configure the contest data
	Contest milestones
	Team authentication
	Providing testdata
	Start the daemons
	Check that everything works
	Testing jury solutions

	Team Workstations
	Web interface
	Jury and Administrator view
	The scoreboard
	Balloons

	Security
	Considerations
	Internal security
	Root privileges
	File system privileges
	External security

	Common problems and their solutions
	Java compilers and the chroot
	The Java virtual machine (jvm) and memory limits
	Java class naming
	GCJ compiler warnings
	Error: `submit_copy.sh failed with exitcode XX'
	C#/mono support
	Memory limit errors in the web interface
	Compiler errors: `runguard: root privileges not dropped'

	Multi-site contests
	DOMjudge and the ICPC validator interface standard
	Submitdaemon and the Dolstra protocol
	Dolstra protocol requirements

	Developer information
	Bootstrapping from Git repository sources
	Maintainer mode installation
	Makefile structure

