
DOMjudge Administrator's Manual

by the DOMjudge team Fri, 9 May 2014 07:43:22 +0200

This doument provides information about DOMjudge installation, on�guration and operation for the DOMjudge

administrator. A separate manual is available for teams and for jury members. Doument version: 9d13fd9

Contents

1 DOMjudge overview 5

1.1 Features . 5

1.2 Requirements . 5

1.3 Copyright and liening . 6

1.4 Contat . 7

2 Contest planning 8

2.1 Contest hardware . 8

2.2 Requirements . 8

3 Installation and on�guration 11

3.1 Quik installation . 11

3.2 Prerequisites . 12

3.3 Installation system . 13

3.4 Con�guration . 14

3.5 Con�guration of languages . 14

3.6 Con�guration of speial run and ompare programs . 15

3.7 Alerting system . 17

3.8 Other on�gurable sripts . 17

3.9 Submission methods . 17

3.10 Database installation . 17

3.11 Web server on�guration . 19

3.12 Logging & debugging . 19

3.13 Installation of a judgehost . 20

3.14 Building and installing the submit lient . 20

3.15 (Re)generating doumentation and the team manual . 21

3.16 Optional features . 22

3.17 Upgrading . 24

2

CONTENTS 3

4 Setting up a ontest 25

4.1 Con�gure the ontest data . 25

4.2 Contest milestones . 28

4.3 Team authentiation . 28

4.4 Providing testdata . 30

4.5 Start the daemons . 30

4.6 Chek that everything works . 30

4.7 Testing jury solutions . 31

5 Team Workstations 32

6 Web interfae 33

6.1 Jury and Administrator view . 33

6.2 The soreboard . 33

6.3 Balloons . 35

7 Seurity 36

7.1 Considerations . 36

7.2 Internal seurity . 36

7.3 Root privileges . 37

7.4 File system privileges . 37

7.5 External seurity . 38

A Common problems and their solutions 39

A.1 Java ompilers and the hroot . 39

A.2 The Java virtual mahine (jvm) and memory limits . 39

A.3 Java lass naming . 40

A.4 GCJ ompiler warnings . 40

A.5 Error: `submit_opy.sh failed with exitode XX' . 41

A.6 C#/mono support . 41

A.7 Memory limit errors in the web interfae . 41

A.8 Compiler errors: `runguard: root privileges not dropped' . 41

B Multi-site ontests 42

C DOMjudge and the ICPC validator interfae standard 43

D Submitdaemon and the Dolstra protool 44

D.1 Dolstra protool requirements . 45

CONTENTS 4

E Developer information 46

E.1 Bootstrapping from Git repository soures . 46

E.2 Maintainer mode installation . 46

E.3 Make�le struture . 46

1 DOMjudge overview

DOMjudge is a system for running programming ontests like the ACM regional and world hampionship

programming ontests.

This means that teams are on-site and have a �xed time period (mostly 5 hours) and one omputer to solve a

number of problems (mostly 6-10). Problems are solved by writing a program in one of the allowed languages,

that reads input aording to the problem input spei�ation and writes the orret, orresponding output.

The judging is done by submitting the soure ode of the solution to the jury. There the jury system ompiles

and runs the program and ompares the program output with the expeted output.

This software an be used to handle the submission and judging during suh ontests. It also handles

feedbak to the teams and ommuniation on problems (lari�ation requests). It has web interfaes for the

jury, the teams (their submissions and lari�ation requests) and the publi (soreboard).

1.1 Features

A global overview of the features that DOMjudge provides:

• Automati judging with distributed (salable) judge hosts

• Web interfae for portability and simpliity

• Modular system for plugging in languages/ompilers and more

• Detailed jury information (submissions, judgings) and options (rejudge, lari�ations)

• Designed with seurity in mind

• Has been used in many live ontests

• Open Soure, Free Software

1.2 Requirements

This is a (rough) list of the requirements for DOMjudge.

• At least one mahine running Linux, with (sudo) root aess

• Apahe web server with PHP 5.2 or newer and PHP-ommand line interfae

• MySQL database server version 4.1.0 or newer

• Compilers for the languages you want to support

A 2.2 (detailed list of requirements) is ontained in the 3 (Installation and Con�guration) hapter.

5

CHAPTER 1. DOMJUDGE OVERVIEW 6

1.3 Copyright and liening

DOMjudge is developed by Jaap Eldering, Thijs Kinkhorst, Peter van de Werken and Tobias Werth. Devel-

opment is hosted at Study Assoiation A-Eskwadraat , Utreht University , The Netherlands.

It is Copyright () 2004 - 2014 by The DOMjudge Developers.

DOMjudge, inluding its doumentation, is free software; you an redistribute it and/or modify it under the

terms of the GNU General Publi Liense http://www.gnu.org/opyleft/gpl.html as published by the

Free Software Foundation; either version 2, or (at your option) any later version. See the �le COPYING.

This software is partly based on ode by other people. These aknowledgements are made in the respetive

�les, but we would like to name them here too:

• dash (i386) is inluded, built from the Debian dash soures (opyright various people, see

do/dash.opyright).

• mkstemps.h and basename.h are modi�ed versions from the GNU libiberty library (opyright Free

Software Foundation).

• lib.database.php by Jeroen van Wol�elaar et al.

• submit. and submitdaemon. are based on submit.pl and submitdaemon.pl by Eelo Dolstra.

• runguard. was originally based on timeout from The Coroner's Toolkit by Wietse Venema.

• sorttable.js by Stuart Langridge.

• jsolor.js by Jan Odvarko.

• tabber.js by Patrik Fitzgerald.

• GeSHi syntax highlighter library by Benny Baumann, Nigel MNie.

• The DOMjudge logo is based on the NKP 2004 logo made by Erik van Sebille.

• Several ions have been taken from the phpMyAdmin projet.

• Several M4 autoonf maros from the Autoonf arhive by various people are inluded under m4/.

1.3.1 Non-GPL liened parts of DOMjudge

A binary version of the dash shell (statially ompiled) is distributed with DOMjudge. This program is

opyright by various people under the BSD liene and a part under the GNU GPL version 2, see COPYING.BSD

and do/dash.opyright for more details. Soures an be downloaded from:

http://www.domjudge.org/soures/ .

The sorttable.js sript is opyright by Stuart Langridge and liened under the MIT liene, see

COPYING.MIT. This software was downloaded from

http://www.kryogenix.org/ode/browser/sorttable/ . The jsolor.js sript is opyright by Jan

Odvarko and liened under the GNU LGPL. It was obtained at http://jsolor.om . The tabber.js

sript is opyright by Patrik Fitzgerald and liened under the MIT liene, see COPYING.MIT. It was down-

loaded from http://www.barelyfitz.om/projets/tabber/ .

The M4 autoonf maros are liened under all-permissive and GPL3+ lienes; see the respetive �les for

details.

http://www.gnu.org/copyleft/gpl.html
http://www.domjudge.org/sources/
http://www.kryogenix.org/code/browser/sorttable/
http://jscolor.com
http://www.barelyfitz.com/projects/tabber/

CHAPTER 1. DOMJUDGE OVERVIEW 7

DOMjudge inludes spei�ations of a number of interfaes. These spei�ations are dediated to the publi

domain, as spei�ed in the Creative Commons Publi Domain Dediation (CC0 1.0) . These spei�ations

an be found as appendies in the judge manual and as separate ASCII text �les in the doumentation

diretory:

• The hektestdata language grammar.

• The DOMjudge problem format zip-bundle.

1.3.2 About the name and logo

The name of this judging system is inspired by a very important and well known landmark in the ity of

Utreht: the dome tower, alled the `Dom' in Duth. The logo of the 2004 Duth Programming Champi-

onships (for whih this system was originally developed) depits a representation of the Dom in zeros and

ones. We based the name and logo of DOMjudge on that.

We would like to thank Erik van Sebille, the original reator of the logo. The logo is under a GPL liene,

but Erik suggested a "free as in beer" liene �rst: you're allowed to use it, but you owe Erik a free beer in

ase might you enounter him.

1.4 Contat

The DOMjudge homepage an be found at: http://www.domjudge.org/

We have a low volume mailing list for announements of new releases.

The authors an be reahed through the development mailing list: domjudge-devel�lists.a-eskwadraat.nl .

You need to be subsribed before you an post. See the list information page for subsription and more

details.

Some developers and users of DOMjudge linger on the IRC hannel dediated to DOMjudge on the Freenode

network: server ir.freenode.net, hannel #domjudge. Feel free to drop by with your questions and

omments.

2 Contest planning

2.1 Contest hardware

DOMjudge diserns the following kinds of hosts:

Team omputer

Workstation for a team, where they develop their solutions and from whih they submit them to the

jury system. The only part of DOMjudge that runs here is the optional ommand line submit lient;

all other interation by teams is done with a browser via the web interfae.

DOMjudge server

A host that reeives the submissions, runs the database and serves the web pages. This host will run

Apahe, and MySQL. Also alled domserver for brevity.

Judgehosts

A number of hosts, at least one, that will retrieve submitted solutions from the DOMjudge server,

ompile and run them and send the results bak to the server. They will run the judgedaemon from

DOMjudge.

Jury / admin workstations

The jury members (persons) that want to monitor the ontest need just any workstation with a web

browser to aess the web interfae. No DOMjudge software runs on these mahines.

One (virtual) mahine is required to run the DOMserver. The minimum amount of judgehosts is also one,

but preferably more: depending on on�gured timeouts, judging one solution an tie up a judgehost for

several minutes, and if there's a problem with one judgehost it an be resolved while judging ontinues on

the others.

As a rule of thumb, we reommend one judgehost per 20 teams.

However, overprovisioning does not hurt: DOMjudge sales easily in the number of judegehosts, so if hardware

is available, by all means use it. But running a ontest with fewer mahines will equally work well, only the

waiting time for teams to reeive an answer may inrease.

Eah judgehost should be a dediated (virtual) mahine that performs no other tasks. For example, although

running a judgehost on the same mahine as the domserver is possible, it's not reommended exept for testing

purposes. Judgehosts should also not double as loal workstations for jury members. Having all judgehosts

be of uniform hardware on�guration helps in reating a fair, reproduible setup; in the ideal ase they are

run on the same type of mahines that the teams use.

DOMjudge supports running multiple judgedaemons in parallel on a single judgehost mahine. This might

be useful on multi-ore mahines. Note that although eah judgedaemon proess an be bound to one single

CPU ore (using Linux groups), shared use of other resoures suh as disk I/O might still have a minor

e�et on run times. For more details on using this, see the setion 3.16 (Installation: optional features).

2.2 Requirements

2.2.1 System requirements

The requirements for the deployment of DOMjudge are:

8

CHAPTER 2. CONTEST PLANNING 9

• Computers for the domserver and judgehosts must run Linux or a Unix variant. This software has

been developed mostly under Debian GNU/Linux, and the manual adds some spei� hints for that,

whih also apply to Debian derivative distributions like Ubuntu. DOMjudge has been tested a bit

under other Linux distributions and FreeBSD. We try to adhere to POSIX standards.

• (Loal) root aess on the domserver and judgehosts for on�guring sudo, installing some �les with

restrited permissions and for (un)mounting the pro �le system when using Java. See 7.3 (Seurity:

root privileges) for more details.

• A TCP/IP network whih onnets all DOMjudge and team omputers. Extra network seurity whih

restrits internet aess and aess to other servies (ssh, mail, talk, et..) is advisable, but not provided

by this software, see 7.5 (Seurity: external seurity) for more details. TCP/IP networking is used in

a few di�erent ways:

� The judgehosts use TCP/IP onnetions to onnet to the MySQL database on port 3306.

� HTTP tra� from teams, the publi and jury to the web server, port 80 or 443.

� The `submit' ommand line lient onnets to the web server also via HTTP.

When using the IP_ADDRESS authentiation sheme, then eah team omputer needs to have a

unique IP address from the view of the DOMjudge server, see 4.3 (Contest setup: team authentiation)

for more details.

2.2.2 Software requirements

The following software is required for running DOMjudge.

• For every supported programming language a ompiler is needed; preferably one that an generate

statially linked stand-alone exeutables.

• Apahe web server with support for PHP >= 5.2.0 and the mysqli and json extensions for PHP. We

also reommend the posix extension for extra debugging information.

• MySQL >= 4.1.x database and lient software

• PHP >= 5.2.0 ommand line interfae and the mysqli and json extensions.

• A POSIX ompliant shell in /bin/sh (e.g. bash or ash)

• A statially ompiled POSIX shell, loated in lib/judge/sh-stati (dash is inluded for Linux IA32)

• A lot of standard (GNU) programs, a probably inomplete list: hostname, date, dirname, basename,

touh, hmod, p, mv, at, grep, di�, w, mkdir, mk�fo, mount, sleep, head, tail, pgrep

• sudo to gain root privileges

• Apahe htpasswd

• xsltpro

from the GNOME XSLT library pakage.

• A LaTeX installation to regenerate the team PDF-manual with site spei� on�guration settings

inluded.

The following items are optional, but may be required to use ertain funtionality.

• phpMyAdmin , to be able to aess the database in an emergeny or for data import/export

CHAPTER 2. CONTEST PLANNING 10

• An NTP daemon (for keeping the loks between jury system and judgehosts in syn)

• liburl (to use the ommand line submit lient with the web interfae)

• libmagi (for ommand line submit lient to detet binary �le submissions)

• PECL xdi� extension (to reliably make di�s between submissions, DOMjudge will try alternative

approahes if it's not available)

• PHP zip Extension (to upload problem data via zip bundles)

• beep for audible noti�ation of errors, submissions and judgings, when using the default alert sript.

Software required for building DOMjudge:

• g and g++ with standard libraries. Other ompilers and libraries might also work: we have suess-

fully ompiled DOMjudge soures with Clang from the LLVM projet; the C library should support

the POSIX.1-2008 spei�ation.

• GNU make

• The Boost regular expression library and the GNU Multiple Preision library to build the

hektestdata program for advaned heking of input/output data orretness. These are optional

and an be disabled with the on�gure option �disable-hektestdata.

2.2.3 Requirements for team workstations

In the most basi setup the team workstations only need (next to the tools needed for program development)

a web browser. The web interfae fully works with any known browser, but a HTML5-apable browser

adds more onveniene funions. With JavaSript disabled, all basi funtionality remains working, with the

notable exeption of multiple �le uploads on non-HTML5-ready browsers.

3 Installation and on�guration

This hapter details a fresh installation of DOMjudge. The �rst setion is a Quik Installation Referene,

but that should only be used by those already aquainted with the system. A detailed guide follows after

that.

3.1 Quik installation

Note: this is not a replaement for the thorough installation instrutions below, but more a heat-sheet for

those who've already installed DOMjudge before and need a few hints. When in doubt, always onsult the

full installation instrution.

External software:

• Install the MySQL-server, set a root password for it and make it aessible from all judgehosts.

• Install Apahe, PHP and (reommended) phpMyAdmin.

• Make sure PHP works for the web server and ommand line sripts.

• Install neessary ompilers on the judgehosts.

• See also 3.2 (an example ommand line for Debian GNU/Linux).

DOMjudge:

• Extrat the soure tarball and run ./onfigure [�enable-fhs℄ �prefix=<basepath>.

• Run make domserver judgehost dos or just those targets you want installed on the urrent host.

• Run make install-{domserver,judgehost,dos} as root to install the system.

On the domserver host:

• Install the MySQL database using bin/dj-setup-database -u root -r install on the domserver

host.

• Add et/apahe.onf to your Apahe on�guration, edit it to your needs, reload web

server: sudo ln -s .../domserver/et/apahe.onf /et/apahe2/onf.d/domjudge.onf &&

sudo apahe2tl graeful

• Chek that the web interfae works (/team, /publi and /jury) and hek that the jury interfae is

password proteted. Add individual user aounts for jury members to et/htpasswd-jury.

• Add useful ontest data through the jury web interfae or with phpMyAdmin.

• Run the on�g heker in the jury web interfae.

On the judgehosts:

• RedHat: useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

Debian: useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run

(hek spei� options of useradd, sine these vary per system)

11

CHAPTER 3. INSTALLATION AND CONFIGURATION 12

• Add to /et/sudoers.d/ or append to /et/sudoers the sudoers on�guration as in

et/sudoers-domjudge.

• Copy the �le et/dbpasswords.seret from the domserver to all judgehosts to synhronise database

passwords.

• Optionally build a hroot to support interpreted or byte-ompiled langauges suh as Java, see the

appendix on A.1 (setting up a hroot).

• Start the judge daemon: bin/judgedaemon

It should be done by now. As a hek that (almost) everything works, the set of test soures an be submitted:

d tests

make hek

Note that this requires AUTH_METHOD in et/domserver-onfig.php to be on�gured to IPADDRESS or FIXED,

suh that one team has passwordless aess to the web interfae. You may also want to set the environment

variable SUBMITBASEURL to your DOMjudge base URL, e.g. http://domjudge.example.om/.

Then, in the main jury web interfae, selet the admin link judging veri�er to automatially verify most of

the test soures, exept for a few with multiple possible outomes; these have to be veri�ed by hand. Read

the test soures for a desription of what should (not) happen.

Optionally:

• Install the submit lient on the team workstations.

• Generate one-time passwords for all the teams in the web interfae.

• Further tighten the seurity of the system, e.g. by applying �rewall rules.

• Start the balloon noti�ation daemon: d bin; ./balloons; or use the balloon web interfae.

• Setup the Java hroot environment on the judgehosts to use Java with hroot:

bin/dj_make_hroot <hrootdir> <arhiteture>

$EDITOR lib/judge/hroot-startstop.sh

enable the hroot-startstop.sh sript in et/judgehost-onfig.php and add

et/sudoers-domjudge to /et/sudoers.d/ or append it to /et/sudoers.

• Set up group support in the judgedaemons.

• For additional features in the jury web interfae, the following PHP extensions an be installed:

� xdi� PECL extension for di�s between submissions;

� zip PHP-bundled extension (�enable-zip) for uploading problem data as zip-bundles (enabled

by default in Debian, but not in all other Linux distributions).

3.2 Prerequisites

For a detailed list of the hardware and software requirements, please refer to the previous hapter on ontest

planning.

CHAPTER 3. INSTALLATION AND CONFIGURATION 13

3.2.1 Debian installation ommand

For your onveniene, the following ommand will install needed software on the DOMjudge server as men-

tioned above when using Debian GNU/Linux, or one of its derivate distributions like Ubuntu.

apt-get install g g++ make liburl4-gnutls-dev mysql-server \

apahe2 php5 php5-li libapahe2-mod-php5 php5-mysql php5-json \

php-geshi phpmyadmin \

ntp sudo props xsltpro \

libboost-regex-dev libgmp3-dev linuxdo-tools linuxdo-tools-text \

transfig groff texlive-latex-reommended texlive-latex-extra \

texlive-fonts-reommended

On a judgehost, the following should be su�ient. The last line shows some example ompilers to install for

C, C++, Java (GNU), Java (Orale/Sun), Haskell and Pasal; hange the list as appropriate.

apt-get install make sudo php5-li php5-mysql php5-json ntp xsltpro props \

g g++ gj openjdk-6-jre-headless openjdk-6-jdk gh fp-ompiler

3.3 Installation system

The DOMjudge build/install system onsists of a onfigure sript and make�les, but when installing it,

some more are has to be taken than simply running './onfigure && make && make install'. DOMjudge

needs to be installed both on the server and on the judgehosts. These require di�erent parts of the omplete

system to be present and an be installed separately. Within the build system these parts are referred to as

domserver, judgehost and additionally dos for all doumentation.

There are three di�erent methods for installing DOMjudge:

Single diretory tree

With this method all DOMjudge related �les and programs are installed in a single diretory tree whih

is spei�ed by the pre�x option of on�gure, like

./onfigure --prefix=$HOME/domjudge

This will install eah of the domserver, judgehost, dos parts in a subdiretory

$HOME/domjudge/domserver et. These subdiretories an be overridden from the defaults

with options like �with-domserver_root=DIR, see onfigure �help for a omplete list. The pre�x

defaults to /opt/domjudge.

Besides the installed �les, there will also be diretories for logging, temporary �les, submitted soures

and judging data:

log

ontains all log �les.

tmp

ontains temporary �les.

submissions

(optionally) on the domserver ontains all orretly submitted �les: as bakup only, the database

is the authoritative soure. Note that this diretory must be writable by the web server for this

feature to work.

CHAPTER 3. INSTALLATION AND CONFIGURATION 14

judgings

loation on judgehosts where submissions are tested, eah in its own subdiretory.

This method of installation is the default and probably most pratial for normal purposes as it keeps

all �les together, hene easily found.

FHS ompliant

This method installs DOMjudge in diretories aording to the Filesystem Hierarhy Standard . It an

be enabled by passing the option �enable-fhs to onfigure and in this ase the pre�x defaults to

/usr/loal. Files will be plaed e.g. in PREFIX/share/domjudge, PREFIX/bin, /var/log, /tmp,

/et/domjudge.

Maintainer install

Meant for those wishing to do development on the DOMjudge soure ode. See the E (appendix with

developer information).

After running the onfigure sript, the system an be built and installed. Eah of the domserver,

judgehost, dos parts an be built and installed separately, respetively by:

make domserver && sudo make install-domserver

make judgehost && sudo make install-judgehost

make dos && make install-dos

Note that even when installing e.g. in your own home diretory, root privileges are still required for domserver

and judgehost installation, beause user and group ownership of password �les, some diretories and to give

sudo aess to runguard. One should not run DOMjudge programs and daemons under the root user

however, but under a normal user: runguard is spei�ally designed to be the only part invoked as root

(through sudo) to make this unneessary and running as root will give rise to problems, see A.8 (runguard:

root privileges not dropped) in the ommon problems setion.

For a list of basi make targets, run make in the soure root diretory without arguments.

3.4 Con�guration

Con�guration of the judge system is mostly done by editing the on�guration variables on the page

Configuration settings available in the administrator interfae. Changes take e�et immediately.

Some settings that are tightly oupled to the �lesystem an be on�gured in the �les in et:

domserver-onfig.php, judgehost-onfig.php, ommon-onfig.php for the on�guration options of

the domserver, judgehost and shared on�guration options respetively. The latter should be synhronised

between domserver and judgehosts. Desriptions of settings are inluded in these �les. The judgedaemon

must be restarted for hanges to take e�et, while these are diretly piked up by the webinterfaes.

Besides these settings, there are a few other plaes where hanges an be made to the system, see 3.8 (other

on�gurable sripts).

3.5 Con�guration of languages

Con�guration of the ompilers of the supported languages should be done separately. For eah supported

language a shell-sript named ompile_<lang>.sh should be reated and plaed in lib/judge on the

judgehosts, where <lang> is the ID of the language as spei�ed in the database. For more information,

CHAPTER 3. INSTALLATION AND CONFIGURATION 15

see for example ompile_.sh, and ompile.sh in lib/judge for syntax. Note that ompile sripts are

inluded for the most ommon languages already.

Interpreted languages and non-statially linked binaries an in priniple also be used, but requires that all

dependenies are added to the hroot environment.

Interpreted languages do not generate an exeutable and in priniple do not need a ompilation step. How-

ever, to be able to use interpreted languages (also Orale's Java), a sript must be generated during the

ompilation step, whih will funtion as the exeutable: the sript must run the interpreter on the soure.

See ompile_perl.sh and ompile_java_java.sh in lib/judge for examples.

DOMjudge supports the use of Orale (Sun) Java within a hroot environment. For this, a hroot environment

whih inludes the Java libraries must �rst be built. This an be aomplished with the inluded sript

dj_make_hroot: run this as root and pass as arguments the target diretory to build the hroot environment

in and as seond argument the target mahine arhiteture. Start the sript without arguments for usage

information. See also setions 3.13 (Installation of a judgehost) and A.1 (Problems: Java & hroot).

3.6 Con�guration of speial run and ompare programs

To allow for problems that do not �t within the standard sheme of �xed input and/or output, DOMjudge

has the possibility to hange the way submissions are run and heked for orretness.

The bak end sript testase_run.sh that handles the running and heking of submissions, alls separate

programs for running submissions and omparison of the results. These an be speialised and adapted to

the requirements per problem. For this, one has to reate programs or sripts named run_<tag> and/or

ompare_<tag> in the lib/judge diretory, see run and ompare for examples and usage information.

Then the <tag> must be spei�ed in the speial_run and/or speial_ompare �elds of the problem (an

empty value means that the default run and ompare sripts should be used). To simplify the use of ustom

run and ompare programs, DOMjudge omes with wrapper sripts that handle the tedious, standard part.

In most ases it will probably be onvenient to use these, see run_wrapper and ompare_wrapper for details,

and the usage explanations below.

3.6.1 Compare programs

Implementing a speial ompare program, also alled a validator , an be done in two ways: either write

a program that is alled diretly (by testase_run.sh) or use a opy of the ompare_wrapper sript. In

the �rst ase, the ompare program must adhere to the C (ICPC validator interfae). The seond ase

is probably the easiest solution: the sript ompare_wrapper generates the XML result �le and handles

rediretion of input/output for you. Use this wrapper by opying or symlinking it to ompare_<tag> and

let the jury write a heker program whih an be alled as

hek_<tag> <testdata.in> <program.out> <testdata.out>

This program should write some kind of di�erene to stdout. No output from the heker program results

in a orret verdit and a nonzero exitode in an internal (system) error. See as an example the inluded

program hek_float, whih ompares �oating point numbers. The name of the hek program and any

parameters an also be modi�ed in the ompare_wrapper sript.

For example, to ompare output while ignoring DOS/UNIX newline di�erenes, one an opy

ompare_wrapper to ompare_dos_newline_OK and in that �le set the variable CHECK_PROGRAM="`whih

diff`" and replae the line

CHAPTER 3. INSTALLATION AND CONFIGURATION 16

"$CHECK_PROGRAM" $CHECK_OPTIONS "$TESTIN" "$PROGRAM" "$TESTOUT" > "$DIFFOUT"

by the lines

sed -i 's/\r$//' "$TESTOUT"

sed 's/\r$//' "$PROGRAM" | $CHECK_PROGRAM -a - "$TESTOUT" > "$DIFFOUT"

Note that these ommands will modify the loal opy of the jury testdata, but the original output generated

by the team's solution is retained, and a plain di� output is generated. Next, for eah problem that you

want to use this validator for, set the speial_ompare �eld to dos_newline_OK. As an alternative to this

modi�ed validator sript, one an aept presentation errors as orret answers by adding the mapping

'presentation-error' => 'orret',

to the results_remap on�guration variable (to be found in the admin web interfae under on�guration

settings).

For more details on modifying validator sripts, see the omments at the top of the �les testase_run.sh,

ompare_wrapper and (when not using the wrapper) the appendix on the C (ICPC validator interfae).

DOMjudge supports a presentation-error result. The default ompare program returns this result when

output only di�ers by whitespae; this is ounted as an inorret submission. The sript ompare_wrapper

does not support presentation error results however. By default presentation errors are remapped to wrong

answer; this an be hanged with results_remap.

3.6.2 Run programs

Speial run programs an be used, for example, to reate an interative problem, where the ontestants'

program exhanges information with a jury program and reeives data depending on its own output. The

problem boolfind is inluded as an example interative problem, see dos/examples/boolfind.pdf for the

desription.

Usage is similar to ompare programs: you an either reate a program run_<tag> yourself, or use the

provided wrapper sript, whih handles bi-diretional ommuniation between a jury program and the on-

testants' program on stdin/stdout.

For the �rst ase, the alling syntax that the program must aept is equal to the alling syntax of

run_wrapper, whih is doumented in that �le. When using run_wrapper, you should opy or symlink

it to another name run_<tag> and the jury must write a program named exatly runjury_<tag>, aept-

ing the alling syntax

runjury_<tag> <testdata.in> <program.out>

where the arguments are �les to read input testdata from and write program output to, respetively. This

program will ommuniate via stdin/stdout with the ontestants' program. A speial ompare program

must probably also be reated, so the exat data written to <program.out> is not important, as long as

the orretness of the ontestants' program an be dedued from the ontents by the ompare program.

CHAPTER 3. INSTALLATION AND CONFIGURATION 17

3.7 Alerting system

DOMjudge inludes an alerting system. This allows the administrator to reeive alerts when important

system events happen, e.g. an error ours, or a submission or judging is made.

These alerts are passed to a plugin sript alert whih an easily be adapted to �t your needs. The default

sript emits di�erent beeping sounds for the di�erent messages when the beep program is available, but it

ould for example also be modi�ed to send a mail on spei� issues, onnet to monitoring software like

Nagios, et. For more details, see the sript lib/alert.

3.8 Other on�gurable sripts

There are a few more plaes where some on�guration of the system an be made. These are sometimes

needed in non-standard environments.

• In bin/dj_make_hroot on a judgehost some hanges to variables an be made, most notably

DEBMIRROR to selet a Debian mirror site near you.

• Optional sripts submit/submit_opy.sh and lib/judge/hroot-startstop.sh an be modi�ed to

suit your loal environment. See omments in those �les for more information.

3.9 Submission methods

DOMjudge supports two submission methods: via the ommand line submit program and via the web

interfae. From experiene, both methods have users that prefer the one above the other. Note that the

submit lient an only be used when the IPADDRESS authentiation method is used.

The ommand line submit lient an send submissions by either using the web interfae internally (http

protool, the default), or using a speial ommand line submit protool, alled Dolstra. The latter has some

speial features but is not usually needed. See D (Submitdaemon and the Dolstra protool) for details on

this.

Using the http protool with the submit lient requires the libURL library development �les at ompile

time (the submit lient is statially linked to libURL to avoid a runtime dependeny).

The database is the authoritative version for submission soures; �le system storage is available as an easy

way to aess the soure �les and as bakup. The program bin/restore_soures2db is available to reover

the submission table in the database from these �les. The ommand line daemon will automatially store

soures on the �le system; the web server needs write permissions on <domjudge_submitdir> and ignores

�le system storage if these permissions are not set.

3.10 Database installation

DOMjudge uses a MySQL database server for information storage.

The database struture and privileges are inluded in MySQL dump �les in the sql subdiretory. The

default database name is domjudge. This an be hanged manually in the et/dbpasswords.seret �le:

the database name as spei�ed in this �le will be used when installing.

Installation of the database is done with bin/dj-setup-database. For this, you need an installed and

on�gured MySQL server and administrator aess to it. Run

CHAPTER 3. INSTALLATION AND CONFIGURATION 18

dj-setup-database genpass

dj-setup-database [-u <admin_user>℄ [-p <password>|-r℄ install

This �rst reates the DOMjudge database redentials �le et/dbpasswords.seret (optionally hange the

random generated password, although it is not needed for normal operation). Then it reates the database

and users and inserts some default/example data into the domjudge database. The option -r will prompt

for a password for mysql; when no user is spei�ed, the mysql lient will try to read redentials from

$HOME/.my.nf as usual. The ommand uninstall an be passed to dj-setup-database to remove the

DOMjudge database and users; this deletes all data!

The domjudge database ontains a number of tables, some of whih need to be manually �lled with data

before the ontest an be run. See the 4.1 (database setion of Contest setup) for details.

3.10.1 Fine tuning settings

For Apahe, there are ountless douments on how to maximise performane. Of partiular importane is

to ensure that the MaxClients setting is high enough to reeive the number of parallel requests you expet,

but not higher than your amount of RAM allows.

As for PHP, the use of an opode ahe like the Alternative PHP Cahe (Debian pakage: php-ap) is

bene�ial for performane. For uploading large testases, see the A.7 (setion about memory limits).

It may be desirable or even neessary to �ne tune some MySQL default settings:

• max_onnetions: The default 100 is too low, beause of the onnetion ahing by Apahe threads.

1000 is more appropriate.

• max_allowed_paket: The default of 16MB might be too low when using large testases. This should

be hanged both in the MySQL server and lient on�guration and be set to about twie the maximum

testase size.

• skip-networking or bind-address: By default MySQL only listens on a loal soket, but judgehosts

need to onnet remotely to it. When enabling remote onnetions, you may want to limit it to only

the IP's of judgehosts in the MySQL user on�guration (or with �rewall rules).

• Root password: MySQL does not have a password for the root user by default. It's very desirable to

set one.

• Client onnetion settings: lient onnetions from the judgehosts to the domserver are by default

unenrypted. Depending on your network setup it may be desirable to enable this. Also, enabling

ompression an help when working with large testase data.

• When maximising performane is required, you an onsider to use the Memory (formerly Heap) table

for the soreboard_publi and soreboard_jury tables. They will be lost in ase of a full rash, but

an be realulated from the jury interfae.

3.10.2 Setting up repliation or bakups

The MySQL server is the entral plae of information storage for DOMjudge. Think well about what to do

if the MySQL host fails or loses your data.

A very robust solution is to set up a repliating MySQL server on another host. This will be a hot opy of

all data up to the seond, and an take over immediately in the event of failure. The MySQL manual has

more information about setting this up.

CHAPTER 3. INSTALLATION AND CONFIGURATION 19

Alternatively, you an make regular bakups of your data to another host, for example with mysqldump, or

use a RAID based system.

Repliation an also be used to improve performane, by direting all selet-queries to one or more repliated

slave servers, while updates will still be done to the master. This is not supported out of the box, and will

require making hanges to the DOMjudge soure.

3.11 Web server on�guration

For the web interfae, you need to have a web server (e.g. Apahe) installed on the domserver and made

sure that PHP orretly works with it. Refer to the doumentation of your web server and PHP for details.

You should turn PHP's magi_quotes_* options o�. We also reommend to turn o� register_globals.

To on�gure the web server for DOMjudge, use the Apahe on�guration snippet from et/apahe.onf. It

ontains examples for on�guring the DOMjudge pages with an alias diretive, or as a virtualhost, optionally

with SSL; it also ontains PHP and seurity settings. Reload the web server for hanges to take e�et.

3.11.1 Jury authentiation

Protetion of the jury (and plugin) interfae happens through HTTP basi-auth on�gured in Apahe. A

default user domjudge_jury with password equal to that in et/dbpasswords.seret is set at installation.

You should add aounts for the individual users (admins, judges) that will aess the jury interfae. These

users an be added with the htpasswd program to et/htpasswd-jury:

htpasswd [<path to et>℄/htpasswd-jury <username>

Individual judge aounts are needed beause ations in the jury interfae, e.g. who laimed or veri�ed a

submission, are tied to this user.

Apahe supports many types of authentiation bakends, so it's also possible to use LDAP, CAS, SAML

(Shibboleth) or any other means, as long as this results in a username being presented to DOMjudge. The

inluded apahe.onf has examples.

For team authentiation, see 4.3 (the relevant setion in Contest Setup).

See also setion 7.4.1 (Seurity: webserver privileges) for some details on �le permissions for the

et/dbpasswords.seret and et/htpasswd-{jury,plugin} �les.

3.12 Logging & debugging

All DOMjudge daemons and web interfae sripts support logging and debugging in a uniform manner via

funtions in lib.error.*. There are three ways in whih information is logged:

• Diretly to stderr for daemons or to the web page for web interfae sripts (the latter only on serious

issues).

• To a log �le set by the variable LOGFILE, whih is set in eah program. Unsetting this variable disables

this method.

• To syslog. This an be on�gured via the SYSLOG on�guration variable in et/ommon-onfig.php.

This option gives the �exibility of syslog, suh as remote logging. See the syslog(daemon) doumenta-

tion for more information. Unsetting this variable disables this method.

CHAPTER 3. INSTALLATION AND CONFIGURATION 20

Eah sript also de�nes a default threshold level for messages to be logged to stderr (VERBOSE: defaults

to LOG_INFO in daemons and LOG_ERR in the web interfae) and for log �le/syslog (LOGLEVEL: defaults to

LOG_DEBUG).

In ase of problems, it is advisable to hek the logs for lues. Extra debugging information an be obtained

by setting the on�g option DEBUG to a bitwise-or of the available DEBUG_* �ags in et/ommon-onfig.php,

to e.g. generate extra SQL query and timing information in the web interfae.

3.13 Installation of a judgehost

A few extra steps might need to be taken to ompletely install and on�gure a judgehost.

For running solution programs under a non-privileged user, a user has to be added to the system(s) that

at as judgehost. This user does not need a home-diretory or password, so the following ommand would

su�e to add a user `domjudge-run' with minimal privileges.

On RedHat:

useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

On Debian:

useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run

For other systems hek the spei�s of your useradd ommand. This user must also be on�gured as the

user under whih programs run via onfigure �enable-runuser=USER; the default is domjudge-run.

Runguard needs to be able to beome root for ertain operations like hanging to the runuser and performing

a hroot. Also, the default hroot-startstop.sh sript uses sudo to gain privileges for ertain operations.

There's a pregenerated /et/sudoers.d/ snippet in et/sudoers-domjudge that ontains all required rules.

You an put the lines in the snippet at the end of /et/sudoers, or, for modern sudo versions, plae the

�le in /et/sudoers.d/. If you hange the user you run the judgehost at, or the installation paths, be sure

to update the sudoers rules aordingly.

When the hroot setting is enabled (default), a stati POSIX shell has to be available for opying it to the

hroot environment. For Linux i386, a stati Dash shell is inluded, whih works out of the box. For other

arhitetures or operating systems, a shell has to be added manually. Then simply point the lib/sh-stati

symlink to this �le. If you want to support languages that annot be ompiled to statially linked binaries,

e.g. byte-ompiled languages suh as Java, or interpreted languages suh as Python, then a omplete hroot

environment must be built and on�gured. See the appendix on A.1 (setting up a hroot) for more details.

Upon startup, the judgehost will onnet to the domserver and add an entry for itself to the judgehosts

table, by default enabled. If you wish to add a new judgehost but have it initially disabled, you an add it

manually through the DOMjudge web interfae and set it to disabled before starting the judgedaemon.

3.14 Building and installing the submit lient

The submit lient an be built with make submitlient. There is no make target to install the submit

lient, as its loation will very muh depend on the environment. You might e.g. want to opy it to all team

omputers or make it available on a network �lesystem. Note that if the team omputers run a di�erent

(version of the) operating system than the jury systems, then you need to build the submit lient for that

OS.

CHAPTER 3. INSTALLATION AND CONFIGURATION 21

The submit lient needs to know the address of the domserver. This an be passed as a ommand line option

or environment variable. The latter option makes for easier usage. A sample sript submit_wrapper.sh is

inluded, whih sets this variable. See that sript for more details on how to set this up.

3.14.1 The submit lient under Windows/Cygwin

The submit lient an also be built under Windows when the Cygwin environment is installed. First the

Cygwin setup.exe http://ygwin.om/setup.exe program must be downloaded and installed with GCC,

url-devel and maybe some more pakages inluded.

When Cygwin is orretly installed with all neessary development tools, the submit binary an be reated

by running onfigure followed by make submit.exe in the submit diretory.

3.15 (Re)generating doumentation and the team manual

There are three sets of doumentation available under the do diretory in DOMjudge:

the admin-manual

for administrators of the system (this doument),

the judge-manual

for judges, desribing the jury web interfae and giving some general information about this system,

the team-manual

for teams, explaining how to use the system and what restritions there are.

The team manual is only available in PDF format and must be built from the LaTeX soures in do/team after

on�guration of the system. A prebuilt team manual is inluded, but note that it ontains default/example

values for site-spei� on�guration settings suh as the team web interfae URL and judging settings suh

as the memory limit. We strongly reommend rebuilding the team manual to inlude site-spei� settings

and also to revise it to re�et your ontest spei� environment and rules.

Besides a standard LaTeX installation, the team manual requires the svn and expdlist pakages.

These are available in TeX Live in the texlive-latex-extra pakage in any modern Linux distribu-

tion. Alternatively, you an download and install them manually from their respetive subdiretories in

http://mirror.tan.org/maros/latex/ontrib .

When the dos part of DOMjudge is installed and site-spei� on�guration set, the team manual an

be generated with the ommand genteammanual found under dos/team. The PDF doument will be

plaed in the urrent diretory or a diretory given as argument. The option -w WEBBASEURI an be

passed to set the base URI of the DOMjudge webinterfae; it should end with a slash and defaults to

http://example.om/domjudge/. The following should do it on a Debian-like system:

sudo apt-get install make transfig texlive-latex-extra texlive-latex-reommended

d .../dos/team

./genteammanual [-w http://your.loation.example.om/domjudge/℄ [targetdir℄

The team manual is urrently available in two languages: English and Duth. We welome any translations

to other languages.

The administrator's and judge's manuals are available in PDF and HTML format and prebuilt from SGML

soures. Rebuilding these is not normally neessary. To rebuild them on a Debian-like system, the following

ommands should do it:

http://cygwin.com/setup.exe
http://mirror.ctan.org/macros/latex/contrib

CHAPTER 3. INSTALLATION AND CONFIGURATION 22

sudo apt-get install linuxdo-tools make transfig ghostsript groff texlive-latex-reommended

make -C do/admin dos

make -C do/judge dos

3.16 Optional features

3.16.1 Linux Control Groups (groups) in the judgedaemon

DOMjudge has experimental support for using Linux Control Groups or groups for proess isolation in

the judgedaemon. Using groups gives more aurate measurement of atually alloated memory, whih is

helpful with interpreters like Java that reserve but not atually use lots of memory. Also, the feature will

restrit network aess so no separate measures are neessary, and allows to run multiple judgedaemons on

a multi-ore mahine.

The judgedaemon needs to run a reent Linux kernel (at least 3.2.0). The following steps on�gure groups

on Debian wheezy. Instrutions for other distributions may be di�erent (send us your feedbak!).

• Install the neessary pakages: # apt-get install libgroup-dev group-bin

• Edit grub on�g to add memory group and swap aounting to the boot options. Edit

/et/default/grub and hange the default ommandline to GRUB_CMDLINE_LINUX_DEFAULT="quiet

group_enable=memory swapaount=1". Then run update-grub and reboot.

• Compile DOMjudge with group support. Re-run ./onfigure and look for group in the output.

Then rebuild the runguard with make build.

You have now on�gured the system to use groups, but you need to reate the atual groups that DOMjudge

will use. For that, you an use the sript under mis-tools/reate_groups. Edit the sript to math your

situation �rst. This sript needs to be re-run after eah boot (e.g., add it to the judegedaemon init sript).

3.16.2 Multiple judgedaemons per mahine

With group support set up, as per the setion above, you an run multiple judgedaemons on one multi-pu

or multi-ore mahine, dediating one pu ore to eah judgedaemon.

To that end, set the puset.pus variable in et/group-domjudge.onf snippet orretly, e.g. to use all

ores on a quad-ore mahine set it to 0-3, and add extra unprivileged users to the system, i.e. add users

domjudge-run-<X> (where X runs through 0,1,2,3) with useradd as desribed in setion 3.13 (installation

of a judgehost). Finally, start eah of the judgedaemons with:

$ judgedaemon -n <X>

3.16.3 Soure ode syntax highlighting

To support oloured display of submitted soure ode in the jury interfae, two external lasses of syntax

highlighters are supported:

GeSHi http://qbnz.om/highlighter and the

PEAR http://pear.php.net

Text_Highlighter lass http://pear.php.net/pakage/Text_Highlighter/ . DOMjudge inludes a opy

of GeSHi under the lib/ext/ dir, but tries to �nd either of those in your PHP inlude path. When none

are found, DOMjudge falls bak to soure ode display without highlighting.

http://qbnz.com/highlighter
http://pear.php.net
http://pear.php.net/package/Text_Highlighter/

CHAPTER 3. INSTALLATION AND CONFIGURATION 23

GeSHi

GeSHi is inluded by default under the lib/ext/ dir.

PEAR Text Highlighter

If you prefer the PEAR Text Highlighter, �rst move away the lib/ext/geshi diretory. You an install the

Text Highlighter system wide with the PEAR-provided tools, like this: pear install Text_Highlighter.

Alternatively you an download the soure ode from the Text_Highlighter website and unpak that under

the lib/ext/ diretory on the domserver. Rename the resulting Text_Highlighter-x.y.z diretory to just

Text.

3.16.4 NTP time synhronisation

We advise to install an NTP-daemon (Network Time Protool) to make sure the time between domserver

and judgehost (and team omputers) is in syn.

3.16.5 Printing

It is reommended to on�gure the loal desktop printing of team workstations whereever possible: this has

the most simple interfae and allows teams to print from within their editor.

If this is not feasible, DOMjudge inludes support for printing via the DOMjudge web interfae: the DOM-

judge server then needs to be able to deliver the uploaded �les to the printer. It an be enabled via the

enable_printing on�guration option in the administrator interfae. The exat ommand used to send the

�les to a printer an be hanged the funtion send_print() in lib/www/printing.php.

3.16.6 The plugin web interfae

Next to the publi, team and jury web interfaes, DOMjudge also provides a plugin web interfae. This

web interfae is still in beta/development so subjet to hange. The interfae provides ontest data from

DOMjudge in XML format and is meant to provide external programs (plugins) with data on the ontest.

This allows for all kinds of extensions beyond the ore funtionality of DOMjudge suh as providing a fany

soreboard with more statistis, aggregation of soreboard data for a �nal presentation during the prize

eremony.

As we are still thinking about possible uses and thus the data to be provided, the exat spei�ation of this

interfae may hange. Also, we are espeially interested in feedbak and ideas.

There are urrently two data-sets provided within the plugin subdiretory of the DOMjudge web interfae,

both in XML format:

soreboard.php

This page provides a representation of the soreboard. Additionally it inludes legend tables for

problems, languages, a�liations and team ategories. It does not aept any arguments.

event.php

This page provides a representation of events that happened during the ontest, inluding submissions,

judgings, ontest state hanges and general lari�ations. This page aepts two arguments fromid

and toid to limit the output to events with event ID in that range.

CHAPTER 3. INSTALLATION AND CONFIGURATION 24

See these pages or the aompanying xsd-�les for the exat struture.

A nie example plugin is DOMjura https://github.om/nikygerritsen/DOMjura by Niky Gerritsen.

This provides a graphial resolver of the soreboard from the freeze time until end of ontest and an be

used during the �nal prize eremony. It is a reimplementation of the resolver made by Tim deBoer for the

ICPC World Finals.

3.17 Upgrading

There is some support to upgrade DOMjudge to newer versions. Note that this funtionality is not extensively

tested, so when you plan to upgrade, you are strongly advised to bakup the DOMjudge database and other

data before ontinuing . We also advise to hek the ChangeLog �le for important hanges.

Upgrading the �lesystem installation is probably best done by installing the new version of DOMjudge in a

separate plae and transferring the on�guration settings from the old version.

There are SQL upgrade sripts to transform the database inluding its data to the layout of a newer version.

The sripts an be found under sql/upgrade and eah sript applies hanges between two onseutive

DOMjudge versions. At the beginning of eah sript, a hek is performed whih will let MySQL bail out

with an error if it should not be applied anymore. Note that the sripts must be applied in order (sorted by

release). These sripts an be applied by running dj-setup-database upgrade.

https://github.com/nickygerritsen/DOMjura

4 Setting up a ontest

After installation is suessful, you want to run your ontest! Con�guring DOMjudge to run a ontest (or a

number of them, in sequene) involves the following steps:

• Con�gure the ontest data;

• Set up authentiation for teams;

• Supply in- and output testdata;

• Chek that everything works.

4.1 Con�gure the ontest data

DOMjudge stores and retrieves most of its data from the MySQL database. Some information must be �lled

in beforehand, other tables will be populated by DOMjudge.

You an use the jury web interfae to add, edit and delete most types of data desribed below. It's advised to

keep a version of phpMyAdmin handy in ase of emergenies, or for general database operations like import

and export.

This setion desribes the meaning of eah table and what you need to put into it. Tables marked with an

`x' are the ones you have to on�gure with ontest data before running a ontest (via the jury web interfae

or e.g. with phpMyAdmin), the other tables are used automatially by the software:

auditlog Log of every state-hanging event.

balloon Balloons to be handed out.

lari�ation Clari�ation requests/replies are stored here.

x on�guration Runtime on�guration settings.

x ontest Contest de�nitions with start/end time.

event Log of events during ontests.

judgehost Computers (hostnames) that funtion as judgehosts.

judging Judgings of submissions.

judging_run Result of one testase within a judging.

x language De�nition of allowed submission languages.

x problem De�nition of problems (name, orresponding ontest, et.).

soreboard_jury Cahe of the soreboards for publi/teams and for the jury

soreboard_publi separately, beause of possibility of sore freezing.

submission Submission metadata of solutions to problems.

submission_�le Submitted ode �les.

x team De�nition of teams.

x team_a�liation De�nition of institutions a team an be a�liated with.

x team_ategory Di�erent ategory groups teams an be put in.

team_unread Reords whih lari�ations are read by whih team.

x testase De�nition of testdata for eah problem.

Now follows a longer desription (inluding �elds) per table that has to be �lled manually. As a general

remark: almost all tables have an identi�er �eld. Most of these are numeri and automatially inreasing;

these do not need to be spei�ed. The tables language, problem, team, and team_affiliation have text

25

CHAPTER 4. SETTING UP A CONTEST 26

strings as identi�er �elds. These need to be manually spei�ed and only alpha-numeri, dash and undersore

haraters are valid, i.e. a-z, A-Z, 0-9, -, _.

on�guration

This table ontains on�guration settings and is work in progress. These entries are simply stored as

name, value pairs.

ontest

The ontests that the software will run. E.g. a test session and the live ontest.

id is the referene ID and ontestname is a desriptive name used in the interfae.

ativatetime, starttime and endtime are required �elds and speify when this ontest is ative and

open for submissions. Optional freezetime and unfreezetime ontrol soreboard freezing. For a

detailed treating of these, see setion 4.2 (Contest milestones).

The enabled �eld an be unset to allow for easier editing of ontest times, as disabled ontests are not

heked to overlap with other ontests. A disabled ontest will also not beome ative.

language

Programming languages in whih to aept and judge submissions. langid is a string of maximum

length 8, whih referenes the language; it is used internally as extension for soure �les and must

math the �rst extension listed for the language in the LANG_EXTS setting in the on�guration �les.

This referene is also used to all the orret ompile sript (lib/judge/ompile_.sh, et.), so when

adding a new language, hek that these math.

name is the displayed name of the language; allow_submit determines whether teams an submit using

this language; allow_judge determines whether judgehosts will judge submissions for this problem.

This an for example be set to no to temporarily hold judging when a problem ours with the judging

of a spei� language; after resolution of the problem this an be set to yes again.

time_fator is the relative fator by whih the timelimit is multiplied for solutions in this language.

For example Java is/was known to be struturally slower than C/C++.

problem

This table ontains the problem de�nitions. probid is the referene ID, id is the ontest ID this

problem is (only) de�ned for: a problem annot be used in multiple ontests. name is the full name

(desription) of the problem.

allow_submit determines whether teams an submit solutions for this problem. Non-submittable

problems are also not displayed on the soreboard. This an be used to de�ne spare problems, whih

an then be added to the ontest quikly; allow_judge determines whether judgehosts will judge

submissions for this problem. See also the explanation for language.

timelimit is the timelimit in seonds within whih solutions for this problem have to run (taking into

aount time_fator per language).

speial_run if not empty de�nes a ustom run program run_<speial_run> to run ompiled sub-

missions for this problem and speial_ompare if not empty de�nes a ustom ompare program

ompare_<speial_ompare> to ompare output for this problem.

The olor tag an be �lled with a CSS olour spei�ation to assoiate with this problem; see also

setion 6.2.1 (Soreboard: olours).

In problemtext a PDF, HTML or plain text doument an be plaed whih allows team, publi and

jury to download the problem statement. Note that no additional �ltering takes plae, so HTML (and

PDF to some extent) should be from a trusted soure to prevent ross site sripting or other attaks.

The �le type is stored in problemtext_type.

CHAPTER 4. SETTING UP A CONTEST 27

team

Table of teams: login is the aount/login-name of the team (whih is referened to in other tables as

teamid) and name the displayed name of the team. ategoryid is the ID of the ategory the team is

in; affilid is the a�liation ID of the team.

authtoken is a generi �eld used by several of the supported authentiation mehanisms to store a

piee of information it needs to identify the team. The ontent of the �eld for eah of the mehanisms

is:

• IPADDRESS: �eld ontains the IP address of the team's workstation

• PHP_SESSIONS: ontains a hash of the password that the team an log in with

• LDAP: ontains the LDAP name (e.g. CN) orresponding to this DOMjudge user

When enabled is set to 0, the team immediately disappears from the soreboards and annot use the

team web interfae anymore, even when already logged in. One use ase ould be to disqualify a team

on the spot.

members are the names of the team members, separated by newlines and room is the loation or room

of the team, both for display only; omments an be �lled with arbitrary useful information and is

only visible to the jury. The timestamp teampage_first_visited and the hostname �eld indiate

when/whether/from where a team visited its team web interfae.

team_a�liation

affilid is the referene ID and name the name of the institution. ountry should be the 3 harater

ISO 3166-1 alpha-3 abbreviation of the ountry and omments is a free form �eld that is displayed in

the jury interfae.

Both for the ountry and the a�liation, a logo an be displayed on the soreboard. For this to work,

the affilid must math a logo piture loated in www/images/affiliations/<affilid>.png and

ountry must math a (�ag) piture in www/images/ountries/<ountry>.png. All ountry �ags

are present there, named with their 3-harater ISO odes. See also www/images/ountries/README.

If either �le is not present the respetive ID string will be printed instead.

team_ategory

ategoryid is the referene ID and name is a string: the name of the ategory. sortorder is the order

at whih this group must be sorted in the soreboard, where a higher number sorts lower and equal

sort depending on sore.

The olor is again a CSS olour spei�ation used to disern di�erent ategories easily. See also setion

6.2.1 (Soreboard: olours).

The visible �ag determines whether teams in this ategory are displayed on the publi/team sore-

board. This feature an be used to remove teams from the publi soreboard by assigning them to a

separate, invisible ategory.

testase

The testase table ontains testdata for eah problem; testaseid is a unique identi�er, input and

output ontain the testase input/output and md5sum_input, md5sum_output their respetive md5

hashes to hek for up-to-date-ness of ahed versions by the judgehosts. probid is the orresponding

problem and rank determines the order of the testases for one problem. desription is an optional

desription for this testase. See also 4.4 (providing testdata).

CHAPTER 4. SETTING UP A CONTEST 28

4.2 Contest milestones

The ontest table spei�es timestamps for eah ontest that mark spei� milestones in the ourse of the

ontest.

The triplet ativatetime, starttime and endtime de�ne when the ontest runs and are required �elds (ati-

vatetime and starttime may be equal).

ativatetime is the moment when a ontest �rst beomes visible to the publi and teams (potentially replaing

a previous ontest that was displayed before). Nothing an be submitted yet and the problem set is not

revealed. Clari�ations an be viewed and sent.

At starttime, the soreboard is displayed and submissions are aepted. At endtime the ontest stops. New

inoming submissions will be stored but not proessed; unjudged submissions reeived before endtime will

still be judged.

freezetime and unfreezetime ontrol soreboard freezing. freezetime is the time after whih the publi and

team soreboard are not updated anymore (frozen). This is meant to make the last stages of the ontest

more thrilling, beause no-one knows who has won. Leaving them empty disables this feature. When using

this feature, unfreezetime an be set to automatially `unfreeze' the soreboard at that time. For a more

elaborate desription, see also setion 6.2.3 (Soreboard: freezing and defrosting).

The soreboard, results and lari�ations will remain to be displayed to team and publi after a ontest,

until an ativatetime of a later ontest passes.

All events happen at the �rst moment of the de�ned time. That is: for a ontest with starttime "12:00:00"

and endtime "17:00:00", the �rst submission will be aepted at 12:00:00 and the last one at 16:59:59.

The following ordering must always hold: ativatetime <= starttime < (freezetime <=) endtime (<=

unfreezetime). No two ontests may have overlap: there's always at most one ative ontest at any time.

4.3 Team authentiation

The authentiation system lets domserver know whih team it is dealing with. This system is modular,

allowing �exible addition of new methods, if required. The following methods are available by default for

team authentiation.

4.3.1 PHP session with passwords (default)

Eah team reeives a password and PHP's session management is used to keep trak of whih team is logged

in. This method is easiest to setup. It does require the administrator to generate passwords for all teams

(this an be done in the jury interfae) and distribute those, though. Also, eah team has to login eah time

they (re)start their browser. The password is stored in a salted MD5 hash in the authtoken �eld in database

(team table).

4.3.2 IP-address based

The IP-address of a team's workstation is used as the primary means of authentiation. The system assumes

that someone oming from a spei� IP is the team with that IP listed in the team table. When a team

browses to the web interfae, this is heked and the appropriate team page is presented.

This method has the advantage that teams do not have to login. A requirement for this method is that eah

team omputer has a separate IP-address from the view of the domserver, though, so this is most suitable

CHAPTER 4. SETTING UP A CONTEST 29

for onsite ontests and might not work with online ontests if multiple teams are loated behind a router,

for example. Furthermore, with this method the ommand line submitlient an be used next to the web

interfae submit.

There are three possible ways of on�guring team IP-addresses.

Supply it beforehand

Before the ontest starts, when entering teams into the database, add the IP that eah team will have to

that team's entry in the authtoken �eld. When the teams arrive, everything will work diretly and without

further on�guration (exept when teams swith workplaes). If possible, this is the reommended modus

operandi, beause it's the least hassle just before and during the ontest.

Use one-time passwords

Supply the teams with a one time password with whih to authentiate. Beforehand, generate passwords for

eah team in the jury interfae. When the test session (or ontest) starts and a team onnets to the web

interfae and have an unknown IP, they will be prompted for username and password. One supplied, the

IP is stored and the password is removed and not needed anymore the next time.

This is also a seure option, but requires a bit more hassle from the teams, and maybe from the organisers

who have to distribute piees of paper.

Note: the web interfae will only allow a team to authentiate themselves one. If an IP is set, a next

authentiation will be refused (to avoid trouble with lingering passwords). In order to fully re-authentiate

a team, the IP address needs to be unset. You might also want to generate a new password for this spei�

team. Furthermore, a team must expliitly onnet to the team interfae, beause with an unknown IP, the

root DOMjudge website will rediret to the publi interfae.

Set IP upon �rst submission

This is only possible with the D (Dolstra protool). The advantage is that no prior mapping needs to be

on�gured, but the disadvantage is that the team interfae annot be viewed until at least one submission

was made; there are also more onstraints on the system. See the setion on the Dolstra protool for details.

The authtoken �eld in the database ontains either the IP-address, or an MD5 hash of the one-time password

if this was set and the team has not authentiated yet.

4.3.3 Using an external LDAP server

This method an be useful when you want to integrate DOMjudge into a larger system, or already have

redentials on an LDAP server available. The authtoken �eld in the database must ontain the LDAP

username of the DOMjudge team. Furthermore, in et/domserver-onfig.php the LDAP_* on�guration

settings must be adapted to your setup. Note that multiple (bakup) servers an be spei�ed: they are

queried in order to try to suessfully authentiate. After suessful authentiation against the LDAP

server(s), PHP sessions are used to trak login into DOMjudge.

4.3.4 Fixed team authentiation

This method automatially authentiates eah onnetion to the team web interfae as a �xed, on�gurable

team. This an be useful for testing or demonstration purposes, but probably not for real use senario's.

CHAPTER 4. SETTING UP A CONTEST 30

4.3.5 Adding new authentiation methods

The authentiation system is modular and adding new authentiation methods is fairly easy. The authentia-

tion is handled in the �le lib/www/auth.team.php. Adding a new method amounts to editing the funtions

in that �le to handle your spei� ase.

4.4 Providing testdata

Testdata is used to judge the problems: when a submission run is given the input testdata, the resulting

output is ompared to the referene output data. If they math exatly, the problem is judged to be

orret. For problems with a speial ompare sript, testdata should still be provided in the same way, but

the orretness depends on the output of the ustom ompare sript. Please hek the doumentation in

judge/ompare_wrapper when using this feature.

The database has a separate table named testase, whih an be manipulated from the web interfae. Under

a problem, lik on the testase link. There the �les an be uploaded. The judgehosts ahe a opy based

on MD5 sum, so if you need to make hanges later, re-upload the data in the web interfae and it will

automatially be piked up.

Testdata an also be imported into the system from a zip-bundle on eah problem webpage. Eah pair of

�les <path-to-file>/<filename>.in and orresponding *.out found in the zip-bundle will be added as

testdata. Furthermore, when the �le domjudge-problem.ini exists, then problem properties are read from

that �le in INI-syntax. All keys from the problem table are supported, so an example ontents ould be:

probid = hello

name = Hello world!

allow_submit=false

olor=blue

Testases will be added to those already present and imported properties will overwrite those in the database.

A ompletely new problem an also be imported from a zip-bundle on the problems overview webpage; in

that ase, note that if the �le domjudge-problem.ini is not present, a default value is hosen for the

unmodi�able primary key probid (as well as for the other keys). It is possible to upload multiple zip �les

in one go, eah of whih will be added as a separate problem.

4.5 Start the daemons

One everything is on�gured, you an start the daemons. They all run as a normal user on the system.

The needed root privileges are gained through sudo only when neessary.

• One or more judgedaemons, one on eah judgehost;

• Optionally the balloon noti�ation daemon.

4.6 Chek that everything works

If the daemons have started without any problems, you've ome a long way! Now to hek that you're ready

for a ontest.

CHAPTER 4. SETTING UP A CONTEST 31

First, go to the jury interfae: http://www.your-domjudge-loation/jury. Look under all the menu items

to see whether the displayed data looks sane. Use the on�g-heker under `Admin Funtions' for some sanity

heks on your on�guration.

Go to a team workstation and see if you an aess the team page and if you an submit solutions.

Next, it is time to submit some test solutions. If you have the default Hello World problem enabled, you an

submit some of the example soures from under the do/examples diretory. They should give `CORRECT'.

You an also try some (or all) of the soures under tests. Use make hek to submit a variety of tests; this

should work when the submit lient is available and the default example problems are in the ative ontest.

There's also make stress-test, but be warned that these tests might rash a judgedaemon. The results

an be heked in the web interfae; eah soure �le spei�es the expeted outome with some explanations.

For onveniene, there is a link judging veri�er in the admin web interfae; this will automatially hek

whether submitted soures from the tests diretory were judged as expeted. Note that a few soures have

multiple possible outomes: these must be veri�ed manually.

When all this worked, you're quite ready for a ontest. Or at least, the pratie session of a ontest.

4.7 Testing jury solutions

Before running a real ontest, you and/or the jury will want to test the jury's referene solutions on the

system.

There is no speial feature for testing their solutions under DOMjudge. The simplest approah is to submit

these solutions as a speial team. This method requires a few steps and some arefulness to prevent a

possible information leak of the problemset. It is assumed that you have ompletely on�gured the system

and ontest and that all testdata is provided. To submit the jury solutions the following steps have to be

taken:

• hange the ontest time to make the ontest urrently ative;

• setup a speial team at a loal omputer;

• submit the jury solutions as that team;

• hek that all solutions are judged as expeted in the jury interfae;

• revert the ontest to the original times.

Note that while the ontest time is hanged to the urrent time, anyone might be able to aess the publi

or team web-interfae: there's not too muh there, but on the soreboard the number of problems and their

titles an be read. To prevent this information leak, one ould disonnet the DOMjudge server, judgehosts

and the omputer used for submitting from the rest of the network.

Furthermore, you should make sure that the team you submit the solutions as, is in a ategory whih is set

to invisible, so that it doesn't show up on the publi and team soreboard. The sample team "DOMjudge"

ould be used, as it is in the "Organisation" ategory, whih is not visible by default.

5 Team Workstations

Here's a quik heklist for on�guring the team workstations. Of ourse, when hosting many teams, it

makes sense to generate a preon�gured aount that has these features and an be distributed over the

workstations.

1. The entral tool teams use to interat with DOMjudge is the web browser.

• If possible, set the Home Page to your.domjudge.loation/team/

• Go to the team page and hek if this team is orretly identi�ed.

• If using https and a self signed erti�ate, add this erti�ate to the browser erti�ate list to

prevent annoying dialogs.

2. Make sure ompilers for the supported languages are installed and working.

3. Provide teams with the ommand line submit lient and hek that it works.

4. Make the sample in- and output data from the problem set available.

5. Add your SSH key to their authorized_keys �le, so you an always aess their aount for wiping and

emergenies.

6. Chek that internet aess is bloked.

32

6 Web interfae

The web interfae is the main point of interation with the system. Here you an view submissions oming

in, ontrol judging, view the standings and edit data.

6.1 Jury and Administrator view

The jury interfae has two possible views: one for jury members, and one for DOMjudge administrators.

The seond view is the same as the jury view, but with more features added. Whih to show is deided by

using the HTTP authentiation login used to aess the web interfae; you an list whih HTTP users are

admin with the variable DOMJUDGE_ADMINS in et/domserver-onfig.php.

This separation is handy as a matter of seurity (jury members annot (aidentally) modify things that

shouldn't be) and larity (jury members are not onfused / distrated by options they don't need).

Options o�ered to administrators only:

• Adding and editing any ontest data

• Managing team passwords

• The on�g heker

• Refreshing the soreboard & hostname ahes

• Rejudge 'orret' submissions

• Restart 'pending' judgings

Furthermore, some quik link menu items might di�er aording to usefulness for jury or admins.

A note on rejudging: it is poliy within the DOMjudge system that a orret solution annot be reverted

to inorret. Therefore, administrator rights are required to rejudge orret or pending (hene, possibly

orret) submissions. For some more details on rejudging, see the jury manual.

6.2 The soreboard

The soreboard is the anonial overview for anyone interested in the ontest, be it jury, teams or the general

publi. It deserves to get a setion of its own.

6.2.1 Colours and sorting

Eah problem an be assoiated with a spei� olour, e.g. the olour of the orresponding balloon that is

handed out. DOMjudge an display this olour on the soreboard, if you �ll in the `olor' attribute in the

`problem' table; set it to a valid CSS olour value (e.g. `green' or `#�0000', although a name is preferred for

displaying olour names).

It's possible to have di�erent ategories of teams partiipating, this is ontrolled through the `team_ategory'

table. Eah ategory has its own bakground olour in the soreboard. This olour an be set with the `olor'

attribute to a valid CSS olour value.

33

CHAPTER 6. WEB INTERFACE 34

If you wish, you an also de�ne a sortorder in the ategory table. This is the �rst �eld that the soreboard is

sorted on. If you want regular teams to be sorted �rst, but after them you want to sort both spetator- and

business teams equally, you de�ne `0' for the regular ategory and `1' for the other ategories. To ompletely

remove a ategory from the publi (but not the jury) soreboard, the ategory visible �ag an be set to `0'.

6.2.2 Starting and ending

The displayed soreboard will always be that of the most reently started ontest. The soreboard is never

displayed for a ontest that still has to start. In other words, the sores will beome visible on the �rst

seond of a ontest start time.

When the ontest ends, the sores will remain to be displayed, until a next ontest starts.

6.2.3 Freezing and defrosting

DOMjudge has the option to `freeze' the publi- and team soreboards at some point during the ontest.

This means that sores are no longer updated and remain to be displayed as they were at the time of the

freeze. This is often done to keep the last hour interesting for all. The soreboard freeze time an be set

with the `freezetime' attribute in the ontest table.

The soreboard freezing works by looking at the time a submission is made. Therefore it's possible that

submissions from (just) before the freezetime but judged after it an still ause updates to the publi

soreboard. A rejudging during the freeze may also ause suh updates.

If you do not set any freeze time, this option does nothing. If you set it, the publi and team soreboards will

not be updated anymore one this time has arrived. The jury will however still see the atual soreboard.

One the ontest is over, the sores are not diretly `unfrozen'. This is done to keep them seret until e.g.

the prize eremony. You an release the �nal sores to team and publi interfaes when the time is right.

You an do this either by setting a prede�ned `unfreezetime' in the ontest table, or you push the `unfreeze

now' button in the jury web interfae, under ontests.

6.2.4 Clikability

Almost every ell is likable in the jury interfae and gives detailed information relevant to that ell. This

is (of ourse) not available in the team and publi soreboards, exept that in the team and publi interfae

the team name ell links to a page with some more information and optionally a team piture.

6.2.5 Cahing

The soreboard is not realulated on every page load, but rather ahed in the database. It should be safe

for repeated reloads from many lients. In exeptional situations (should never our in normal operation,

e.g. a bug in DOMjudge), the ahe may beome inaurate. The jury administrator interfae ontains an

option to realulate a fresh version of the entire soreboard. You should use this option only when atually

neessary, sine it puts quite a load on the database.

6.2.6 Exporting to an external website

In many ases you might want to reate a opy of the soreboard for external viewing from the internet. The

ommand bin/stati_soreboard is provided just for that. It writes to stdout a version of the soreboard

CHAPTER 6. WEB INTERFACE 35

with refresh meta-tags and links to team pages removed. This ommand an for example be run every

minute and the output be plaed as stati ontent on a publily reahable webserver.

6.3 Balloons

In many ontests balloons are handed out to teams that solve a partiular problem. DOMjudge an help

in this proess: both a web interfae and a noti�ation daemon are available to notify that a new balloon

needs to be handed out. Note that only one should be used at a time.

The web based tool is reahable from the main page in the jury interfae, where eah balloon has to be

heked o� by the person handing it out.

For the daemon, set the BALLOON_CMD in bin/balloons to de�ne how noti�ations are sent. Examples

are to mail to a spei� mailbox or to send prints to a printer. When on�gured, start bin/balloons and

noti�ation will start.

Noti�ations will stop as soon as the soreboard is frozen. Enable the show_balloons_postfreeze to keep

issuing balloon noti�ations after the freeze.

7 Seurity

This judging system was developed with seurity as one of the main goals in mind. To implement this

rigorously in various aspets (restriting team aess to others and the internet, restriting aess to the

submitted programs on the domjudge systems, et...) requires root privileges to di�erent parts of the whole

ontest environment. Also, seurity measures might depend on the environment. Therefore we have deided

not to implement seurity measures whih are not diretly related to the judging system itself. We do have

some suggestions on how you an setup external seurity.

7.1 Considerations

Seurity onsiderations for a programming ontest are a bit di�erent from those in normal onditions: nor-

mally users only have to be proteted from deliberately harming eah other. During a ontest we also have

to restrit users from ooperatively ommuniating, aessing restrited resoures (like the internet) and

restrit user programs running on judgehosts.

We expet that hanes are small that people are trying to heat during a programming ontest: you have

to hak the system and make use of that within very limited time. And you have to not get aught and

disquali�ed afterwards. Therefore passive seurity measures of warning people of the onsequenes and only

hek (or probe) things will probably be enough.

However we wanted the system to be as seure as possible within reason. Furthermore this software is open

soure, so users an try to �nd weak spots before the ontest.

7.2 Internal seurity

Internal seurity of the system relies on users not being able to get to any vital data (jury input/output and

users' solutions). Data is stored in two plaes: in �les on the DOMjudge system aount and in the SQL

database.

Files should be proteted by restriting permission to the relevant diretories. Database aess is proteted

by passwords. The default permissions allow onnetions from all hosts, so make sure you restrit this

appropriately or hoose strong enough passwords.

Note: the database password is stored in et/dbpasswords.seret. This �le has to be non-readable to

teams, but has to be readable to the web server to let the jury web interfae work. A solution is to make it

readable to a speial group the web server runs as. This is done when using the default on�guration and

installation method and when make install-{domserver,judgehost} is run as root. The webserver group

an be set with onfigure �with-webserver-group=GROUP whih defaults to www-data.

Judgehosts and the domserver ommuniate with eah other through the MySQL protool. By default,

MySQL does not enrypt these onnetions. Refer to the MySQL manual to on�gure SSL for the server

and enable the option in ommon-on�g.php to enable it for lient onnetions; alternatively you an employ

an SSH tunnel or ensure in the network setup that these onnetions are separated from the team network.

The jury web interfae is proteted by HTTP Authentiation. These redentials are essentially sent plain-

text, so we advise to setup HTTPS at least for the jury interfae, but preferably for all web interfaes. By

default the domjudge_jury user will be given full aess. You an hoose to add more users to the �le

et/htpasswd-jury. In et/domserver-onfig.php you an add these users to the list DOMJUDGE_ADMINS.

36

CHAPTER 7. SECURITY 37

Most data-modi�ation funtions are restrited to only users in this list. See also the judge manual for some

more details.

Seondly, the submitted soures should not be intereptable by other teams (even though that, if these would

be sent lear-text, a team would normally need to be root/administrator on their omputer to interept this).

This an be aomplished by using HTTPS for the web interfae. The D (Dolstra submission method) by

default uses SSH to send �les over the network.

There are multiple authentiation methods for teams, eah having its own issues to hek for.

When using IP address authentiation, one has to be areful that teams are not able to spoof their IP (for

whih they normally need root/administrator privileges), as they would then be able to view other teams'

submission info (not their ode) and lari�ations and submit as that team. Note: This means that are has

to be taken e.g. that teams annot simply login onto one another's omputer and spoof their identity.

When using PHP sessions or LDAP, authentiation data is sent via HTTP, so we strongly advise to use

HTTPS in that ase.

Problem texts an be uploaded to DOMjudge. No �ltering is performed there, so make sure they are from

trusted soures to, in the ase of HTML, prevent ross site sripting ode to be injeted.

7.3 Root privileges

A di�ult issue is the seuring of submitted programs run by the jury. We do not have any ontrol over

these soures and do not want to rely on heking them manually or �ltering on things like system alls

(whih an be obsured and are di�erent per language).

Therefore we deided to takle this issue by running these programs in a environment as restritive as possible.

This is done by setting up a minimal hroot environment. For this, root privileges on the judgehosts and

statially ompiled programs are needed. By also limiting all kinds of system resoures (memory, proesses,

time, unprivileged user) we protet the system from programs whih try to hak or ould rash the system.

However, a hroot environment does not restrit network aess, so there lies a possible seurity risk that

has to be handled separately.

7.4 File system privileges

Of ourse you must make sure that the �le system privileges are set suh that there's no unauthorised

aess to sensitive data, like submitted solutions or passwords. This is quite system dependent. At least

<judgehost_judgedir> should not be readable by other users than DOMjudge.

7.4.1 Permissions for the web server

The default installation sets permissions orretly for the web server user (ommonly www-data). The

following information is for those who want to verify the setup or make modi�ations to the settings.

Care should be taken with the et dir: the domserver-{onfig,stati}.php, htpasswd-* and

dbpasswords.seret �les should all be readable, but dbpasswords.seret and the htpasswd �les should

not be readable by anyone else. This an be done for example by setting the et diretory to owner:group

<DOMjudge aount>:<Web server group> and permissions drwxr-x�-, denying users other than yourself

and the web server group aess to the on�guration and password �les.

If you want the web server to also store inoming submission soures on the �le system (next to the database),

then <domserver_submitdir> must be writable for the web server, see also 3.9 (submission methods).

CHAPTER 7. SECURITY 38

You should take are not to serve any �les over the web that are not under the DOMjudge 'www/' diretory,

beause they might ontain sensitive data (e.g. those under et/). DOMjudge omes with .htaess �les

that try to prevent this, but double-hek that it's not aessible.

7.5 External seurity

The following seurity issues are not handled by DOMjudge, but left to the administrator to set up.

Network tra� between team omputers, domserver and the internet should be limited to what is allowed.

Possible ways of enforing this might be: monitor tra�, modify �rewall rules on team omputers or (what

we implemented with great satisfation) put all team omputers behind a �rewalling router.

Solutions are run within a restrited (hroot) environment on the judgehosts. This however does not restrit

network aess, so a team ould try to send in a solution that tries to send input testdata bak to them,

aess the internet, et... A solution to this problem is to disallow all network tra� for the test user on the

judgehosts. On Linux, this an be aomplished by modifying the iptables, adding a rule like:

iptables -I OUTPUT -m owner --uid-owner <testuser_uid> -j REJECT

A Common problems and their

solutions

A.1 Java ompilers and the hroot

Java is di�ult to deal with in an automati way. It is probably most preferable to use Orale (previously

Sun) Java, beause that's the version ontestants will be used to. The GNU Compiler for Java (GCJ) is

easier to deal with but may lak some features.

With the default on�guration, submitted programs are run within a minimal hroot environment. For this

the programs have to be statially linked, beause they do not have aess to shared libraries.

For most languages ompilers support this, but for Java, this is a bit problemati. The Orale Java ompiler

`java' is not a real ompiler: a byteode interpreter `java' is needed to run the binaries and thus this annot

simply run in a hroot environment.

There are some options to support Java as a language:

1. One an build a bigger hroot environment whih ontains all neessary ingredients to let Java work

within it. DOMjudge supports this with some manual setup.

First of all, a hroot tree with Java support must be reated. The sript bin/dj_make_hroot reates

one from Debian GNU/Linux soures; run that sript without arguments for basi usage information.

Next, edit the sript lib/judge/hroot-startstop.sh and adapt it to work with your loal system

and unomment the sript in et/judgehost-onfig.php.

2. As an alternative the gj ompiler from GNU an be used instead of Orale's version. This one

generates true mahine ode and an link statially. However a few funtion alls annot be linked

statially (see `GCJ ompiler warnings' in this FAQ). Seondly, the stati library libgj.a doesn't

seem to be inluded in all GNU/Linux distributions: at least not in RedHat Enterprise Linux 4.

3. One an disable the hroot environment in et/judgehost-onfig.php by disabling USE_CHROOT.

Disabling the hroot environment removes this layer of seurity against submissions that attempt to

heat, but it is a simple solution to getting Java to work, for demo or testing purposes. No guarantees

about system seurity an be made when running a ontest with hroot disabled.

A.2 The Java virtual mahine (jvm) and memory limits

DOMjudge imposes memory limits on submitted solutions. These limits are imposed before the ompiled

submissions are started. On the other hand, the Java virtual mahine is started via a ompile-time generated

sript whih is run as a wrapper around the program. This means that the memory limits imposed by

DOMjudge are for the jvm and the running program within it. As the jvm uses approximately 300MB, this

redues the limit by this signi�ant amount. See judge/ompile_java_java.sh for the implementation

details.

If you see error messages of the form

Error ourred during initialization of VM

java.lang.OutOfMemoryError: unable to reate new native thread

39

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 40

or

Error ourred during initialization of VM

Could not reserve enough spae for objet heap

Then the problem is probably that the jvm needs more memory than what is reserved by the Java ompile

sript. You should try to inrease the MEMRESERVED variable in judge/ompile_java.sh and hek that

the on�guration variable memory limit is set larger than MEMRESERVED. If that does not help, you should

try to inrease the on�guration variable proess limit (sine the JVM uses a lot of proesses for garbage

olletion).

A.3 Java lass naming

Java requires a spei� naming of the main lass. When delaring the main lass publi, the �lename must

math the lass name. Therefore one should not delare the main lass publi; from experiene however,

many teams do so. Seondly, the Java ompiler generates a byteode �le depending on the lass name. There

are two ways to handle this.

The simplest Java ompile sript ompile_java_java.sh requires the main lass to be named Main with

method

publi stati void main(String args[℄)

The alternative (and default) is to use the sript ompile_java_java_detet.sh, whih automatially

detets the main lass and even orrets the soure �lename when it is delared publi.

When using the GNU gj ompiler, the same holds and two similar sripts ompile_java_gj.sh and

ompile_java_gj_detet.sh are available.

A.4 GCJ ompiler warnings

When using the GNU GCJ ompiler for ompiling Java soures, it an give a whole lot of warning messages

of the form

/usr/lib/g-lib/i386-linux/3.2.3/libgj.a(g_dlopen.o)(.text+0xb):

In funtion `GC_dlopen': Using 'dlopen' in statially linked

appliations requires at runtime the shared libraries from the glib

version used for linking

These are generated beause you are trying to ompile statially linked soures, but some funtions an not

be stati, e.g. the `dlopen' funtion above. These are warnings and an be safely ignored, beause under

normal programming ontest onditions people are not allowed to use these funtions anyway (and they are

not aessible within the hroot-ed environment the program is run in).

To �lter these warnings, take a look at judge/ompile_java_gjmod.sh and replae or symlink

judge/ompile_java.sh by/to this �le.

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 41

A.5 Error: `submit_opy.sh failed with exitode XX'

This error an have various auses. First of all: hek the submit.log �le for more omplete error messages.

Assuming the default on�guration where submit_opy.sh uses `sp', we have found that shell initialisation

sripts might ontain statements whih generate errors: sp runs the user's default shell when opying

submission �les and when the shell dies (e.g. beause of not having a terminal), the opying fails.

Another ause might be that you do not have automati aess to the team's aount (e.g. using ssh keys).

A.6 C#/mono support

Using the mono ompiler and runtime for C# gives rise to similar problems as with Java. Although the C#

language has been added to DOMjudge, there's no support yet to run it within a hroot environment. So in

that ase, USE_CHROOT must be disabled.

A.7 Memory limit errors in the web interfae

When uploading large testdata �les, one an run into an error in the jury web interfae of the form:

Fatal error: Allowed memory size of XX bytes exhausted (tried to

alloate YY bytes) in /home/domjudge/system/lib/lib.database.php

on line 154

This means that the PHP engine has run out of memory. The solution is to raise the memory limits for PHP.

This an be done by either editing et/apahe.onf and raising the memory_limit, upload_max_filesize

and post_max_size values to well above the size of your largest testase. You an hange these parameters

under the jury diretory or by diretly editing the global Apahe or php.ini on�guration. Note also that

max_file_uploadsmust be larger than the maximum number of testases per problem to be able to upload

and edit these in the web interfae.

The optional PHP Suhosin module may also impose additional limits; hek your error logging to see if these

are triggered. You may also need to raise MySQL's max_allowed_paket parameter in /et/mysql/my.nf

on both server and lient.

A.8 Compiler errors: `runguard: root privileges not dropped'

Compiling failed with exitode 255, ompiler output:

/home/domjudge/system/bin/runguard: root privileges not dropped

When the above error ours on submitting any soure, this indiates that you are running the judgedaemon

as root user. You should not run any part of DOMjudge as root; the parts that require it will gain root by

themselves through sudo. Either run it as yourself or, probably better, reate dediated a user domjudge

under whih to install and run everything.

Also do not onfuse this with the domjudge-run user: this is a speial user to run submissions as and should

also not be used to run normal DOMjudge proesses; this user is only for internal use.

B Multi-site ontests

This manual assumed you are running a singe-site ontest; that is, the teams are loated losely together,

probably in a single physial loation. In a multi-site or distributed ontest, teams from several remote

loations use the same DOMjudge installation. An example is a national ontest where teams an partiipate

at their loal institution.

DOMjudge supports suh a setup on the ondition that a entral installation of DOMjudge is used to whih

the teams onnet over the internet. It is here where all submission proessing and judging takes plae.

Beause DOMjudge uses a web interfae for all interations, teams and judges will interfae with the system

just as if it were loal. Still, there are some spei� onsiderations for a multi-site ontest.

Network: there must be a relatively reliable network onnetion between the loations and the entral

DOMjudge installation, beause teams annot submit or query the soreboard if the network is down.

Beause of travelling an unseured network, you may want to onsider HTTPS for enrypting the tra�. If

you want to limit internet aess, it must be done in suh a way that the remote DOMjudge installation an

still be reahed.

Team authentiation: the IP-based authentiation will still work as long as eah team workstation has a

di�erent publi IP address. If some teams are behind a NAT-router and thus all present themselves to

DOMjudge with the same IP-address, another authentiation sheme must be used (e.g. PHP sessions).

Judges: if the people reviewing the submissions will be loated remotely as well, it's important to agree

beforehand on who-does-what, using the submissions laim feature and how responding to inoming lari�-

ation requests is handled. Having a shared hat/IM hannel may help when unexpeted issues arise.

Soreboard: by default DOMjudge presents all teams in the same soreboard. Per-site soreboards an be

implemented either by using team ategories or team a�liations in ombination with the soreboard �ltering

option.

42

C DOMjudge and the ICPC validator

interfae standard

DOMjudge supports the ICPC validator interfae standard, whih an be found at:

http://www.es.sus.edu/p2/do/valistandard.html

As short summary, this interfae standard onsists of two parts: the invoation and the result interfae.

The invoation interfae spei�es that a validator must be alled as a separate exeutable with at least four

ommand line parameters:

/path/to/validator <input_data> <program_output> <referene_output> \

<result_file> [<extra_options>...℄

The result interfae spei�es that result_file should be a valid XML doument ontaining a root element

<result outome="string1"> string2 </result>

where string1 is the result reported to the judging system and a value "aepted" indiates a orret result.

The invoation ode (judge/testase_run.sh) adheres to the invoation interfae. It passes as a 5th

optional parameter to the validator program the �lename in whih it expets a di�erene output between

the program and jury output (parameters 2 and 3 respetively).

Parsing of the result XML �le (in the result interfae) is done with the `xsltpro' program, whih is part of

the

GNOME libxslt pakage http://www.xmlsoft.org/XSLT/ . The exitode of the validator program should be

zero, otherwise an internal error is generated.

DOMjudge urrently has two validator sripts: judge/ompare and judge/ompare_wrapper. The �rst does

a ompare with a plain di�, the seond sript alls an external program for heking (e.g. judge/hek_float

for omparison of �oating point results). When passed a 5th parameter, this is interpreted as a �lename

to whih these sripts will write a omparison of the program and jury output. Both sripts also generate

XML ompliant output, whih is written to the result �le spei�ed in parameter 4 and fully omplies with

the validator standard.

43

http://www.ecs.csus.edu/pc2/doc/valistandard.html
http://www.xmlsoft.org/XSLT/

D Submitdaemon and the Dolstra

protool

In the default situation, teams an submit their solutions either via browsing to the web interfae, or by

using the ommand line submit lient, whih behind the senes employs the same web interfae to atually

make the submission. This setup su�es for many environments.

The Dolstra protool is di�erent in that it uses a submitdaemon running on the domserver. One advantage

is that submissions an be made before the IP address of the team is known. This authentiation is forti�ed

by the following proess. When a lient onnets, it does not send the submission �le, but only a referene

to a randomised and not publily visible �le. This �le is then opied from server side with the submit_opy

sript. This makes it impossible for teams to spoof a submission for a di�erent team: the server `alls bak'

the team the submitter identi�ed himself as and heks for existene of the advertised �le. Beause �lenames

are randomised and invisible (within the $HOME/.domjudge diretory by default), it is also impossible for

someone to guess another team's �lename and submit it for them.

The �gure below is a graphial representation of the �ow of a submission. Arrows with �lled lines indiate

the �ow of the submission �le, while dot-dash lines indiate �ow of metadata about the submission. Eah

line where no protool of data transfer is given, are just �le system operations. Squares are programs and

rounded squares are storage loations.

webbrowser webserver

submit client

Filesystem

submitdaemon submit_db

TMPDIR

Database

Filesystem

~/.domjudge submit_copy

http(s)

scp

exec
dolstra

choice

http(s)choice

Team Jury

exec

Figure D.1: Submission �ow diagram inluding Dolstra protool.

To have DOMjudge on�gure the IP upon �rst submission in this way, set option STRICTIPCHECK to 0. In

that ase, we start out without IP's (and the web interfae will not be aessible), but as soon as a team

onnets with the ommand line submit lient to the submitdaemon, they are authentiated by orretly

submitting a �le and the IP is registered and everything works as normal.

The onnet an happen during the test session, so during the real ontest everything is fully available.

This is a seure way of authentiating teams, whih requires no passwords or IP on�guration, but teams

must submit via the ommand line submit lient to the ommand line daemon before they an aess their

teampage.

44

APPENDIX D. SUBMITDAEMON AND THE DOLSTRA PROTOCOL 45

D.1 Dolstra protool requirements

If you want to use the Dolstra submit method (next to / instead of the HTTP funtionality) you need to

satisfy the following requirements.

The submitdaemon needs to run at the domserver, and reeive onnetions on a on�gurable TCP port,

default 9147.

Team aounts need to be aessible via SSH on the domserver (a SSH publi key of the DOMjudge system

aount should be installed on all team aounts to provide key-based aess), and a shared �lesystem (e.g.

NFS) is needed between the team omputers and the domserver. Alternatively, another means of providing

aess from the server an be on�gured, see the �le submit/submit_opy.sh for more details.

To build the ommand line lient under Windows, you need to have at least Windows XP and ygwin version

1.7 for support of the omplete netdb.h headers.

E Developer information

This setion ontains instrutions spei�ally for those wishing to modify the DOMjudge soure. If you have

any questions about developing DOMjudge, or if you want to share your hanges that may be useful to

others, please don't hesitate to ontat us through our development mailing list .

E.1 Bootstrapping from Git repository soures

The installation steps in this doument assume that you are using a downloaded tarball from the DOMjudge

website. If you want to install from Git repository soures, beause you want to use the bleeding edge ode

or onsider to send a path to the developers, the on�gure/build system �rst has to be bootstrapped.

This requires additional software to be installed:

• The GNU autoonf/automake toolset

• Flex and bison++ for generating the parsing ode of the optional hektestdata sript.

• Linuxdo, gro� and X�g/trans�g to build the admin and judge doumentation from SGML soures

and a LaTeX installation to generate the PDF admin, judge and default team manual.

On Debian(-based) systems, the following apt-get ommand should install the additionally required pakages

(next to the 3.2 (standard set of pakages)):

apt-get install autoonf automake flex bison++

When this software is present, bootstrapping an be done by running make dist, whih reates the

onfigure sript and generates doumentation from SGML/LaTeX soures.

E.2 Maintainer mode installation

Besides the two modes of installation desribed in setion 3.3 (Installation system), DOMjudge provides a

speial maintainer mode installation. This method does an in-plae installation within the soure tree. This

allows one to immediately see e�ets when modifying ode.

This method requires some speial steps whih an most easily be run via make�le rules as follows:

make maintainer-onf [CONFIGURE_FLAGS=<extra options for ./onfigure>℄

make maintainer-install

Note that these targets have to be exeuted separately and they replae the steps desribed in the setion

3.3 (Installation system); also no �prefix �ag or other diretoriess have to be spei�ed to onfigure.

E.3 Make�le struture

The Make�les in the soure tree use a reursion mehanism to run make targets within the relevant sub-

diretories. The reursion is handled by the REC_TARGETS and SUBDIRS variables and the reursion step is

46

APPENDIX E. DEVELOPER INFORMATION 47

exeuted in Makefile.global. Any target added to the REC_TARGETS list will be reursively alled in all

diretories in SUBDIRS. Moreover, a loal variant of the target with -l appended is alled after reursing into

the subdiretories, so reursion is depth-�rst.

The targets dist, lean, distlean, maintainer-lean are reursive by default, whih means that these

all their loal -l variants in all diretories ontaining a Make�le. This allows for true depth-�rst traversal,

whih is neessary to orretly run the *lean targets: otherwise e.g. paths.mk will be deleted before

subdiretory *lean targets are alled that depend on information in it.

	DOMjudge overview
	Features
	Requirements
	Copyright and licencing
	Contact

	Contest planning
	Contest hardware
	Requirements

	Installation and configuration
	Quick installation
	Prerequisites
	Installation system
	Configuration
	Configuration of languages
	Configuration of special run and compare programs
	Alerting system
	Other configurable scripts
	Submission methods
	Database installation
	Web server configuration
	Logging & debugging
	Installation of a judgehost
	Building and installing the submit client
	(Re)generating documentation and the team manual
	Optional features
	Upgrading

	Setting up a contest
	Configure the contest data
	Contest milestones
	Team authentication
	Providing testdata
	Start the daemons
	Check that everything works
	Testing jury solutions

	Team Workstations
	Web interface
	Jury and Administrator view
	The scoreboard
	Balloons

	Security
	Considerations
	Internal security
	Root privileges
	File system privileges
	External security

	Common problems and their solutions
	Java compilers and the chroot
	The Java virtual machine (jvm) and memory limits
	Java class naming
	GCJ compiler warnings
	Error: `submit_copy.sh failed with exitcode XX'
	C#/mono support
	Memory limit errors in the web interface
	Compiler errors: `runguard: root privileges not dropped'

	Multi-site contests
	DOMjudge and the ICPC validator interface standard
	Submitdaemon and the Dolstra protocol
	Dolstra protocol requirements

	Developer information
	Bootstrapping from Git repository sources
	Maintainer mode installation
	Makefile structure

