
DOMjudge Jury Manual

by the DOMjudge team Fri, 9 May 2014 07:43:22 +0200

This document provides information about DOMjudge aimed at a jury member operating the system during the

contest: viewing and checking submissions and working with clari�cation requests. A separate manual is available

for teams and administrators. Document version: 9d13fd9

Contents

1 DOMjudge Overview 3

1.1 Features . 3

1.2 Copyright and licencing . 3

1.3 Contact . 3

2 General 5

2.1 Judges and Administrators . 5

2.2 Scoreboard . 5

3 Before the contest 6

3.1 Problems and languages . 6

3.2 Verifying testdata . 6

3.3 Testing jury solutions . 7

3.4 Practice Session . 7

4 During the contest 8

4.1 Monitor teams . 8

4.2 Judging Submissions . 8

4.3 Clari�cation Requests . 10

5 After the contest 12

A Checktestdata language speci�cation 13

B DOMjudge problem format 16

2

1 DOMjudge Overview

DOMjudge is a system for running a programming contest, like the ACM ICPC regional and world champi-

onship programming contests.

This means that teams are on-site and have a �xed time period (mostly 5 hours) and one computer to solve a

number of problems (mostly 6-10). Problems are solved by writing a program in one of the allowed languages,

that reads input according to the problem input speci�cation and writes the correct, corresponding output.

The judging is done by submitting the source code of the solution to the jury. There the jury system

automatically compiles and runs the program and compares the program output with the expected output.

This software can be used to handle the submission and judging during such contests. It also handles

feedback to the teams and communication on problems (clari�cation requests). It has web-interfaces for the

jury, the teams (their submissions and clari�cation requests) and the public (scoreboard).

1.1 Features

A global overview of the features that DOMjudge provides:

• Automatic judging with distributed (scalable) judge hosts

• Web-interface for portability and simplicity

• Modular system for plugging in languages/compilers

• Detailed jury information (submissions, judgings) and options (rejudge, clari�cations)

• Designed with security in mind

• Has been used in many live contests

• Open Source, Free Software

1.2 Copyright and licencing

DOMjudge is developed by Jaap Eldering, Thijs Kinkhorst, Peter van de Werken and Tobias Werth. Devel-

opment is hosted at Study Association A-Eskwadraat , Utrecht University , The Netherlands.

It is Copyright (c) 2004 - 2014 by The DOMjudge Developers.

DOMjudge, including its documentation, is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License <http://www.gnu.org/copyleft/gpl.html> as published by the

Free Software Foundation; either version 2, or (at your option) any later version. See the �le COPYING.

Additionally, parts of this system are based on other programs, which are covered by other copyrights. See

the �le README for details.

1.3 Contact

The DOMjudge homepage can be found at: http://www.domjudge.org/

3

http://www.a-eskwadraat.nl/
http://www.uu.nl/
http://www.gnu.org/copyleft/gpl.html
http://www.domjudge.org/

CHAPTER 1. DOMJUDGE OVERVIEW 4

We have a low volume mailing list for announcements of new releases.

The authors can be reached at the following address: domjudge-devel@lists.a-eskwadraat.nl . You need to

be subscribed before you can post. See the list information page for subscription and more details.

Some developers and users of DOMjudge linger on the IRC channel dedicated to DOMjudge on the Freenode

network: server irc.freenode.net, channel #domjudge. Feel free to drop by with your questions and

comments.

http://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-announce
mailto:domjudge-devel@lists.a-eskwadraat.nl
http://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-devel

2 General

The jury interface is accessed through a web browser. The main page shows a list of various overviews,

and the most important of those are also included in the menu bar at the top. The menu bar will refresh

occasionally to allow for new information to be presented. It also has the current `o�cial' contest time in

the top-right corner.

Most pieces of information are clickable and bring up a new page with details. Many items also have tooltips

that reveal extra information when the mouse is hovered over them. Problem, language and team pages have

lists with corresponding submissions for that problem, language or team. Tables can be sorted by clicking

on the column headers.

The most important pages are `Submissions': the list of submitted solutions made by teams, sorted by newest

�rst, and `Scoreboard': the canonical overview of current standings.

2.1 Judges and Administrators

The DOMjudge system discerns between judges and administrators (admins). An administrator is respon-

sible for the technical side of DOMjudge: installation and keeping it running. The jury web interface may

be used by both.

Depending on con�guration, there may either be a separate administrator view or one is shared between

judges and administrators. In the �rst case you will not have access to the admin-speci�c options. In the

latter, you may see options directed at admins, like options to edit or delete data. Only use these options if

you're sure that it's correct to do so.

2.2 Scoreboard

The scoreboard is the most important view on the contest.

The scoreboard will display an upcoming contest from the given `activatetime'; the contest name and a

countdown timer is shown. Only at the �rst second of the real start of the contest it will show the problems

to the teams and public, however. The jury always has a full view on the scoreboard.

It is possible to freeze the scoreboard at a given time, commonly one hour before the contest ends, to keep

that last hour interesting for all. From that time on, the public and team scoreboard will not be updated

anymore (the jury scoreboard will) and indicate that they are frozen. It will be unfrozen at a speci�ed time,

or by a button click in the jury interface. Note that the way freezing works, a submission from before the

freeze and judged after may still update the scoreboard even when frozen.

The problem headings can display the colours of balloons associated with them, when set.

Nearly everything on the scoreboard can be clicked to reveal more detailed information about the item in

question: team names, speci�c submissions and problem headers. Many cells will show additional `title text'

information when hovering over them. The score column lists the number of solved problems and the total

penalty time for each team. Each cell in a problem column lists the number of submissions, and if the

problem was solved, then within parentheses the time of the �rst correct submission in minutes since contest

start, followed by a `+' and the penalty time for any incorrect submissions. Together these count towards

each team's total penalty time.

5

3 Before the contest

Before the contest starts, a number of things will need to be con�gured by the administrator. You can check

that information, such as the problem set(s), test data and time limits, contest start- and end time, the time

at which the scoreboard will be frozen and unfrozen, all from the links from the front page.

Note that multiple contests can be de�ned, with corresponding problem sets, for example a practice session

and the real contest.

3.1 Problems and languages

The problem sets are listed under `Problems'. It is possible to change whether teams can submit solutions

for that problem (using the toggle switch `allow submit'). If disallowed, submissions for that problem will

be rejected, but more importantly, teams will not see that problem on the scoreboard. Disallow judge will

make DOMjudge accept submissions, but leave them queued; this is useful in case an unexpected problem

shows up with one of the problems. Timelimit is the maximum number of seconds a submission for this

problem is allowed to run before a `TIMELIMIT' response is given (to be multiplied possibly by a language

factor). Problems can be imported and exported into and from DOMjudge using zip-�les that contain the

problem metadata and testdata �les. See appendix B (DOMjuge problem format speci�cation). Problems

can have special compare and run scripts associated to them, to deal with problem statements that require

non-standard evaluation. For more details see the administrator's manual.

The `Languages' overview is quite the same. It has a timefactor column; submissions in a language that has

time factor 2 will be allowed to run twice the time that has been speci�ed under Problems. This can be used

to compensate for the execution speed of a language, e.g. Java.

3.2 Verifying testdata

DOMjudge comes with some small tools to check for mistakes in the testdata. These tools are all located in

the misc-tools directory in the source tree.

checkinput checkinput.awk �xinput.awk

The 'checkinput' programs are meant to check testdata input (and optionally also output). They check

for simple layout issues like leading and trailing whitespace, non-printable characters, etc. There's both

a C program and AWK script which do essentially the same thing. See 'checkinput.c' for details. All

scripts take a testdata �le as argument. The '�xinput.awk' script corrects some of these problems.

checktestdata

This program can be used as a more advanced replacement of checkinput. It allows you to not only

check on simple (spacing) layout errors, but a simple grammar �le must be speci�ed for the testdata,

according to which the testdata is checked. This allows e.g. for bounds checking. See appendix A

() for a grammar speci�cation. Two sample scripts checktestdata.{hello,fltcmp} are provided for

the sample problems hello and fltcmp.

This program is built upon the separate library libchecktestdata.h (see checktestdata.cc as an

example for how to use this library) that can be used to write the syntax checking part of special

compare scripts: it can easily handle the tedious task of verifying that a team's submission output is

syntactically valid, leaving just the task of semantic validation to another program. When you want to

6

CHAPTER 3. BEFORE THE CONTEST 7

support `presentation error' as a verdict, also in variable output problems, the option whitespace-ok

can be useful. This allows any non-empty sequence of whitespace (no newlines though) where the

SPACE command is used, as well as leading and trailing whitespace on lines (when using the NEWLINE

command). Please note that with this option enabled, whitespace matching is greedy, so the script

code

INT(1,2) SPACE SPACE INT(1,2)

does not match 1__2 (where the two underscores represent spaces), because the �rst SPACE command

already matches both, so the second cannot match anything.

3.3 Testing jury solutions

Before a contest, you will want to have tested your reference solutions on the system to see whether those

are judged as expected and maybe use their runtimes to set timelimits for the problems. There is no special

method to test such solutions; the easiest way is to submit these as a special team before the contest. This

requires some special care and coordination with the contest administrator. See the administrator's manual

for more details.

3.4 Practice Session

If your contest has a test session or practice contest, use it also as a general rehearsal of the jury system:

judge test submissions as you would do during the real contest and answer incoming clari�cation requests.

4 During the contest

4.1 Monitor teams

Under the Teams menu option, you can get a general impression of the status of each team: a tra�c light

will show either of the following:

gray

the team has not (yet) connected to the web interface at all;

red

the team has connected but not submitted anything yet;

yellow

one or more submissions have been made, but none correct;

green

the team has made at least one submission that has been judged as correct.

This is especially useful during the practice session, where it is expected that every team can make at least

one correct submission. A team with any other colour than green near the end of the session might be having

di�culties.

4.2 Judging Submissions

4.2.1 Flow of submitted solutions

The �ow of an incoming submission is as follows.

1. Team submits solution. It will either be rejected after basic checks, or accepted and stored as a

submission.

2. The �rst available judgehost compiles, runs and checks the submission. The outcome and outputs are

stored as a judging of this submission.

3. If veri�cation is not required, the result is automatically recorded and the team can view the result

and the scoreboard is updated (unless after the scoreboard freeze). A judge can optionally inspect the

submission and judging and mark it veri�ed.

4. If veri�cation is required, a judge inspects the judging. Only after it has been approved (marked as

veri�ed) will the result be visible outside the jury interface. This option can be enabled by setting

verification_required on the con�guration settings admin page.

4.2.2 Submission judging status codes

The interface for jury and teams shows the status of a submission with a code.

QUEUED/PENDING

submission received and awaiting a judgehost to process it *;

8

CHAPTER 4. DURING THE CONTEST 9

JUDGING

a judgehost is currently compiling/running/testing the submission *;

TOO-LATE

submission received but submitted after the contest ended;

CORRECT

submission correct, problem solved;

COMPILER-ERROR

the compiler gave an error while compiling the program;

TIMELIMIT

program execution time exceeded the time de�ned for the problem;

RUN-ERROR

a kind of problem while running the program occurred, for example segmentation fault, division by

zero or exitcode unequal to 0;

NO-OUTPUT

there was no output at all from the program;

WRONG-ANSWER

the output of the program did not exactly match the expected output;

PRESENTATION-ERROR

the submission only had presentation errors; e.g. di�erence in whitespace with the reference output.

* in the team interface a submission will only show as PENDING to prevent leaking information of problem

time limits. The jury can see whether a submission is QUEUED or JUDGING. In case of required veri�cation,

a submission will show as PENDING to the team until the judging has been veri�ed.

Under the Submissions menu, you can see submitted solutions, with the newest one at the top. Click on a

submission line for more details about the submission (team name, submittime etc), a list of judgings and

the details for the most recent judging (runtime, outputs, di� with testdata). There is also a switch available

between newest 50, only unveri�ed, only unjudged or all submissions. The default (coloured) di� output

shows di�erences on numbered lines side by side separated by a character indicating how the lines di�er:

! for di�erent contents, $ for di�erent or missing end-of-line characters, and one of <> when there are no

more lines at the end of the other �le.

Under the submission details the `view source code' link can be clicked to inspect the source code. If the

team has submitted code in the same language for this problem before, a di� output between the current

and previous submission is also available there.

It's possible to edit the source code and resubmit it as the special `domjudge' user. This does not have any

e�ect for the teams, but allows a judge to perform a `what if this was changed'-analysis.

A submission can have multiple judgings, but only one valid judging at any time. Multiple judgings occur

when rejudging, see 4.2.3 (Rejudging).

CHAPTER 4. DURING THE CONTEST 10

4.2.3 Rejudging

In some situations it is necessary to rejudge a submission. This means that the submission will re-enter the

�ow as if it had not been judged before. The submittime will be the original time, but the program will be

compiled, run and tested again.

This can be useful when there was some kind of problem: a compiler that was broken and later �xed, or

testdata that was incorrect and later changed. When a submission is rejudged, the old judging data is kept

but marked as `invalid'.

You can rejudge a single submission by pressing the `Rejudge' button when viewing the submission details.

It is also possible to rejudge all submissions for a given language, problem, team or judgehost; to do so, go to

the page of the respective language, problem, team or judgehost, press the `Rejudge all' button and con�rm.

Submissions that have been marked as `CORRECT' will not be rejudged. Only DOMjudge admins can

override this restriction for individual submissions.

Teams will not get explicit noti�cations of rejudgings, other than a potentially changed outcome of their

submissions. It might be desirable to combine rejudging with a clari�cation to the team or all teams

explaining what has been rejudged and why.

4.2.4 Ignored submissions

Finally, there is the option to ignore speci�c submissions using the button on the submission page. When

a submission is being ignored, it is as if was never submitted: it is not visible to the team that sent it nor

on the scoreboard. It will show striked through in the jury submissions list though. This can be used to

e�ectively delete a submission for some reason, e.g. when a team erroneously sent it for the wrong problem.

The submission can also be unignored again.

4.3 Clari�cation Requests

Communication between teams and jury happens through Clari�cation Requests. Everything related to that

is handled under the Clari�cations menu item.

Teams can use their web interface to send a clari�cation request to the jury. The jury can send a response

to that team speci�cally, or send it to all teams. The latter is done to ensure that all teams have the same

information about the problem set. The jury can also send a clari�cation that does not correspond to a

speci�c request. These will be termed `general clari�cations'.

Under Clari�cations, three lists are shown: new clari�cations, answered clari�cations and general clari�ca-

tions. It lists the team login, the problem concerned, the time and an excerpt. Click the excerpt for details

about that clari�cation request.

Every incoming clari�cation request will initially be marked as unanswered. The menu bar shows the number

of unanswered requests. A request will be marked as answered when a response has been sent. Additionally

it's possible to mark a clari�cation request as answered with the button that can be found when viewing the

request. The latter can be used when the request has been dealt with in some other way, for example by

sending a general message to all teams.

An answer to a clari�cation request is made by putting the text in the input box under the request text.

The original text is quoted. You can choose to either send it to the team that requested the clari�cation,

or to all teams. In the latter case, make sure you phrase it in such a way that the message is self-contained

(e.g. by keeping the quoted text), since the other teams cannot view the original request.

CHAPTER 4. DURING THE CONTEST 11

The menu on every page of the jury interface will mention the number of unanswered clari�cation requests:

�(1 new)�. This number is automatically updated, even without reloading the page.

5 After the contest

Once the contest is over, the system will still accept submissions but will not judge them anymore. Teams

will see this as a `TOO-LATE' response.

If the scoreboard was frozen, it will remain frozen until the time set as unfreeze time, as seen under Contests.

It is possible to publish the �nal standings at any given moment by pressing the `unfreeze now' button under

contests.

There's not much more to be done after the contest has ended. The administrator will need to take care of

backing up all system data and submissions, and the awards ceremony can start.

12

A Checktestdata language speci�cation

This speci�cation is dedicated to the public domain. Its authors waive all rights to the work worldwide

under copyright law, including all related and neighboring rights, as speci�ed in the

Creative Commons Public Domain Dedication (CC0 1.0) <http://creativecommons.org/publicdomain/

zero/1.0/> .

Grammar and command syntax below. A valid checktestdata program consists of a list of commands. All

commands are uppercase, while variables are lowercase with non-leading digits. Lines starting with '#' are

comments and ignored.

The following grammar sub-elements are de�ned:

integer := 0|-?[1-9][0-9]*

float := -?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)?

string := ".*"

varname := [a-z][a-z0-9]*

variable := <varname> | <varname> '[' <expr> [',' <expr> ...] ']'

value := <integer> | <float> | <string> | <variable>

compare := '<' | '>' | '<=' | '>=' | '==' | '!='

logical := '&&' | '||'

expr := <term> | <expr> [+-] <term>

term := <term> [*%/] <factor> | <factor>

factor := <value> | '-' <term> | '(' <expr> ')' | <factor> '^' <factor>

test := '!' <test> | <test> <logical> <test> | '(' <test> ')' |

<expr> <compare> <expr> | <testcommand>

That is, variables can take integer, �oating point as well as string values. No dynamic casting is performed,

except that integers can be cast into �oats. Integers and �oats of arbitrary size and precision are supported,

as well as the arithmetic operators +-*%/� with the usual rules of precedence. An expression is integer

if all its sub-expressions are integer. Integer division is used on integers. The exponentiation operator �

only allows non-negative integer exponents that �t in an unsigned long. String-valued variables can only be

compared (lexicographically), no operators are supported.

Within a string, the backslash acts as escape character for the following expressions:

• \[0-7]{1,3} denotes an octal escape for a character

• \n, \t, \r, \b denote linefeed, tab, carriage return and backspace

• \" and \\ denote " and \

• an escaped newline is ignored (line continuation)

A backslash preceding any other character is treated as a literal backslash.

Tests can be built from comparison operators, the usual logical operators ! && || (not, and, or) and a

number of test commands that return a boolean value. These are:

MATCH(<string> str)

Returns whether the next character matches any of the characters in 'str'.

13

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

APPENDIX A. CHECKTESTDATA LANGUAGE SPECIFICATION 14

ISEOF

Returns whether end-of-�le has been reached.

UNIQUE(<varname> a [,<varname> b ...])

Checks for uniqueness of tuples of values in the combined (array) variables a, b, ... That is, it is checked

that �rstly all arguments have precisely the same set of indices de�ned, and secondly that the tuples

formed by evaluating (a,b,...) at these indices are unique. For example, if x,y are 1D arrays containing

coordinates, then UNIQUE(x,y) checks that the points (x[i],y[i]) in the plane are unique.

INARRAY(<value> val, <varname> array)

Checks if val occurs in one of the indices of array.

The following commands are available:

SPACE / NEWLINE

No-argument commands matching a single space (0x20) or newline respectively.

EOF

Matches end-of-�le. This is implicitly added at the end of each program and must match exactly: no

extra data may be present.

INT(<expr> min, <expr> max [, <variable> name])

Match an arbitrary sized integer value in the interval [min,max] and optionally assign the value read

to variable 'name'.

FLOAT(<expr> min, <expr> max [, <variable> name [, option]])

Match a �oating point number in the range [min,max] and optionally assign the value read to the

variable 'name'. When the option 'FIXED' or 'SCIENTIFIC' is set, only accept �oating point numbers

in �xed point or scienti�c notation, respectively.

STRING(<value> str)

Match the string (variable) 'str'.

REGEX(<string> str [, <variable> name])

Match the extended regular expression 'str'. Matching is performed greedily. Optionally assign the

matched string to variable 'name'.

ASSERT(<test> condition)

Assert that 'condition' is true, fail otherwise.

UNSET(<varname> a [,<varname> b ...])

Unset all values for variables a, b, ... This includes all values for array indexed variables with these

names. This command should typically be inserted at the end of a loop after using UNIQUE or

INARRAY, to make sure that no old variables are present anymore during the next iteration.

REP(<expr> count [,<command> separator]) [<command>...] END

REPI(<variable> i, <expr> count [,<command> separator]) [<command>...] END

Repeat the commands between the 'REP() ... END' statements count times and optionally match

'separator' command (count-1) times in between. The value of count must �t in an unsigned 32 bit

int. The second command 'REPI' does the same, but also stores the current iteration (counting from

zero) in the variable 'i'.

APPENDIX A. CHECKTESTDATA LANGUAGE SPECIFICATION 15

WHILE(<test> condition [,<command> separator]) [<command>...] END

WHILEI(<variable> i, <test> condition [,<command> separator]) [<command>...] END

Repeat the commands as long as 'condition' is true. Optionally match 'separator' command between

two consecutive iterations. The second command 'WHILEI' does the same, but also stores the current

iteration (counting from zero) in the variable 'i'.

IF(<test> cond) [<command> cmds1...] [ELSE [<command> cmds2...]] END

Executes cmds1 if cond is true. Otherwise, executes cmds2 if the else statement is available.

B DOMjudge problem format

This speci�cation is dedicated to the public domain. Its authors waive all rights to the work worldwide

under copyright law, including all related and neighboring rights, as speci�ed in the

Creative Commons Public Domain Dedication (CC0 1.0) <http://creativecommons.org/publicdomain/

zero/1.0/> .

DOMjudge supports the import and export of problems in a zip-bundle format. This zip �le contains the

following �les in its base directory:

domjudge-problem.ini

This �le has a simple INI-syntax and contains problem metadata, see below.

problem.{pdf,html,txt}

The full problem statement as distributed to participants. The �le extension determines any of three

supported formats. If multiple �les matching this pattern are available, any one of those will be used.

<testdata-file>.in / <testdata-file>.out

Each pair of <testdata-file>.{in,out} contains the input and correct/reference output for a single

test case. Single �les without their corresponding in or out counterpart are ignored. The order of the

�les in the zip archive determines the initial ordering of the testcases after import.

<solution>.<ext>

Submits code of reference solution as team 'domjudge' if <ext> is a known language extension. The

contest, the problem, and the language have to be enabled. The contest must be started. If you include

a comment starting with '@EXPECTED_RESULTS@: ' followed by the possible outcomes, you can use

the judging veri�er in the admin interface to verify the results.

When importing a zip �le into DOMjudge, any other �les are ignored.

The �le domjudge-problem.ini contains key-value pairs, one pair per line, of the form key = value. The

= can optionally be surrounded by whitespace and the value may be quoted, which allows it to contain

newlines. The following keys are supported (these correspond directly to the problem settings in the jury

web interface):

• probid - the problem identi�er

• cid - the associated contest identi�er

• name - the problem displayed name

• allow_submit - allow submissions to this problem, disabling this also makes the problem invisible to

teams and public

• allow_judge - allow judging of this problem

• timelimit - time limit in seconds per test case

• special_run - su�x tag of a special run script

• special_compare - su�x tag of a special compare script

• color - CSS color speci�cation for this problem

16

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

APPENDIX B. DOMJUDGE PROBLEM FORMAT 17

The probid key is required when importing a new problem from the jury/problems.php overview page,

while it is ignored when uploading into an existing problem. All other keys are optional. If they are present,

the respective value will be overwritten; if not present, then the value will not be changed or a default chosen

when creating a new problem. Test data �les are added to set of test cases already present. Thus, one can

easily add test cases to a con�gured problem by uploading a zip �le that contains only *.{in,out} �les.

	DOMjudge Overview
	Features
	Copyright and licencing
	Contact

	General
	Judges and Administrators
	Scoreboard

	Before the contest
	Problems and languages
	Verifying testdata
	Testing jury solutions
	Practice Session

	During the contest
	Monitor teams
	Judging Submissions
	Clarification Requests

	After the contest
	Checktestdata language specification
	DOMjudge problem format

