DOMjudge Jury Manual

by the DOMjudge team

Sun, 2 Sep 2012 21:01:58 +0200

This document provides information about DOMjudge aimed at a jury member operating the system during the
contest: viewing and checking submissions and working with clarification requests. A separate manual is available

for teams and administrators. Document version: 82eab4b

Contents

1 DOMjudge Overview

1.1 Features o e e e e e e
1.2 Copyright and licencing
1.3 Contact o e e e

2 General
2.1 Judges and Administrators Lo
2.2 Scoreboard e

3 Before the contest

3.1 Problems and languages L
3.2 Verifying testdata oL
3.3 Testing jury solutions
3.4 Practice SessiOn e

4 During the contest

4.1 Monitor teams L e e e e
4.2 Judging Submissions e
4.3 Clarification Requests

5 After the contest

A Checktestdata language specification

B DOMjudge problem format

w W w W

(S}

N 9 oo o O t

Qo

12

14

1 DOMjudge Overview

DOMjudge is a system for running a programming contest, like the ACM ICPC regional and world champi-
onship programming contests.

This means that teams are on-site and have a fixed time period (mostly 5 hours) and one computer to solve a
number of problems (mostly 6-10). Problems are solved by writing a program in one of the allowed languages,
that reads input according to the problem input specification and writes the correct, corresponding output.

The judging is done by submitting the source code of the solution to the jury. There the jury system
automatically compiles and runs the program and compares the program output with the expected output.

This software can be used to handle the submission and judging during such contests. It also handles
feedback to the teams and communication on problems (clarification requests). It has web-interfaces for the
jury, the teams (their submissions and clarification requests) and the public (scoreboard).

1.1 Features
A global overview of the features that DOMjudge provides:

e Automatic judging with distributed (scalable) judge hosts

Web-interface for portability and simplicity

Modular system for plugging in languages/compilers

Detailed jury information (submissions, judgings) and options (rejudge, clarifications)

Designed with security in mind

Has been used in many live contests

Open Source, Free Software

1.2 Copyright and licencing

DOMjudge is developed by Jaap Eldering, Thijs Kinkhorst, Peter van de Werken and Tobias Werth. Devel-
opment is hosted at Study Association A-Eskwadraat , Utrecht University , The Netherlands.

It is Copyright (c) 2004 - 2012 by The DOMjudge Developers.

DOMjudge, including its documentation, is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License <http://www.gnu.org/copyleft/gpl.html> as published by the
Free Software Foundation; either version 2, or (at your option) any later version. See the file COPYING.

Additionally, parts of this system are based on other programs, which are covered by other copyrights. See
the file README for details.

1.3 Contact

The DOMjudge homepage can be found at: http://domjudge.sourceforge.net/

http://www.a-eskwadraat.nl/
http://www.uu.nl/
http://www.gnu.org/copyleft/gpl.html
http://domjudge.sourceforge.net/

CHAPTER 1. DOMJUDGE OVERVIEW 4

We have a low volume mailing list for announcements of new releases.

The authors can be reached at the following address: domjudge-devel@lists.a-eskwadraat.nl . You need to
be subscribed before you can post. See the list information page for subscription and more details.

http://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-announce
mailto:domjudge-devel@lists.a-eskwadraat.nl
http://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-devel

2 General

The jury interface is accessed through a web browser. The main page shows a list of various overviews,
and the most important of those are also included in the menu bar at the top. The menu bar will refresh
occasionally to allow for new information to be presented. It also has the current ‘official’ contest time in
the top-right corner.

Most pieces of information are clickable and bring up a new page with details. Many items also have tooltips
that reveal extra information when the mouse is hovered over them. Problem, language and team pages have
lists with corresponding submissions for that problem, language or team. Tables can be sorted by clicking
on the column headers.

The most important pages are ‘Submissions’: the list of submitted solutions made by teams, sorted by newest
first, and ‘Scoreboard’: the canonical overview of current standings.

2.1 Judges and Administrators

The DOMjudge system discerns between judges and administrators (admins). An administrator is respon-
sible for the technical side of DOMjudge: installation and keeping it running. The jury web interface may
be used by both.

Depending on configuration, there may either be a separate administrator view or one is shared between
judges and administrators. In the first case you will not have access to the admin-specific options. In the
latter, you may see options directed at admins, like options to edit or delete data. Only use these options if
you're sure that it’s correct to do so.

2.2 Scoreboard

The scoreboard is the most important view on the contest.

The scoreboard will display an upcoming contest from the given ‘activatetime’; the contest name and a
countdown timer is shown. Only at the first second of the real start of the contest it will show the problems
to the teams and public, however. The jury always has a full view on the scoreboard.

It is possible to freeze the scoreboard at a given time, commonly one hour before the contest ends, to keep
that last hour interesting for all. From that time on, the public and team scoreboard will not be updated
anymore (the jury scoreboard will) and indicate that they are frozen. It will be unfrozen at a specified time,
or by a button click in the jury interface. Note that the way freezing works, a submission from before the
freeze and judged after may still update the scoreboard even when frozen.

The problem headings can display the colours of balloons associated with them, when set.

Nearly everything on the scoreboard can be clicked to reveal more detailed information about the item in
question: team names, specific submissions and problem headers.

3 Before the contest

Before the contest starts, a number of things will need to be configured by the administrator. You can check
that information, such as the problem set(s), test data and time limits, contest start- and end time, the time
at which the scoreboard will be frozen and unfrozen, all from the links from the front page.

Note that multiple contests can be defined, with corresponding problem sets, for example a practice session
and the real contest.

3.1 Problems and languages

The problem sets are listed under ‘Problems’. It is possible to change whether teams can submit solutions
for that problem (using the toggle switch ‘allow submit’). If disallowed, submissions for that problem will be
rejected, but more importantly, teams will not see that problem on the scoreboard. Disallow judge will make
DOMjudge accept submissions, but leave them queued; this is useful in case an unexpected problem shows
up with one of the problems. Timelimit is the maximum number of seconds a submission for this problem is
allowed to run before a ‘TIMELIMIT’ respounse is given (multiplied by the language factor). Problems can
be imported and exported into and from DOMjudge using zip-files that contain the problem metadata and
testdata files. See appendix B (DOMjuge problem format specification).

The ‘Languages’ overview is quite the same. It has a timefactor column; submissions in a language that has
time factor 2 will be allowed to run twice the time that has been specified under Problems. This can be used
to compensate for the execution speed of a language, e.g. Java.

3.2 Verifying testdata

DOMjudge comes with some small tools to check for mistakes in the testdata. These tools are all located in
the misc-tools directory in the source tree.

checkinput checkinput.awk fixinput.awk

The ’checkinput’ programs are meant to check testdata input (and optionally also output). They check
for simple layout issues like leading and trailing whitespace, non-printable characters, etc. There’s both
a C program and AWK script which do essentially the same thing. See ’checkinput.c’ for details. All
scripts take a testdata file as argument. The ’fixinput.awk’ script corrects some of these problems.

checktestdata

This program can be used as a more advanced replacement of checkinput. It allows you to not only
check on simple (spacing) layout errors, but a simple grammar file must be specified for the testdata,
according to which the testdata is checked. This allows e.g. for bounds checking. See appendix A
() for a grammar specification. Two sample scripts checktestdata.{hello,fltcmp} are provided for
the sample problems hello and fltcmp.

This program is built upon the separate library libchecktestdata.h (see checktestdata.cc as an
example for how to use this library) that can be used to write the syntax checking part of special
compare scripts: it can easily handle the tedious task of verifying that a team’s submission output is
syntactically valid, leaving just the task of semantic validation to another program. When you want to
support ‘presentation error’ as a verdict, also in variable output problems, the option whitespace-ok
can be useful. This allows any non-empty sequence of whitespace (no newlines though) where the

CHAPTER 3. BEFORE THE CONTEST 7

SPACE command is used, as well as leading and trailing whitespace on lines (when using the NEWLINE
command). Please note that with this option enabled, whitespace matching is greedy, so the script

code

INT(1,2) SPACE SPACE INT(1,2)

does not match 1__2 (where the two underscores represent spaces), because the first SPACE command
already matches both, so the second cannot match anything.

3.3 Testing jury solutions

Before a contest, you will want to have tested your reference solutions on the system to see whether those
are judged as expected and maybe use their runtimes to set timelimits for the problems. There is no special
method to test such solutions; the easiest way is to submit these as a special team before the contest. This
requires some special care and coordination with the contest administrator. See the administrator’s manual

for more details.

3.4 Practice Session

If your contest has a test session or practice contest, use it also as a general rehearsal of the jury system:
judge test submissions as you would do during the real contest and answer incoming clarification requests.

4 During the contest

4.1 Monitor teams

Under the Teams menu option, you can get a general impression of the status of each team: a traffic light
will show either of the following:

gray

the team has not (yet) connected to the web interface at all;

red

the team has connected but not submitted anything yet;
yellow

one or more submissions have been made, but none correct;
green

the team has made at least one submission that has been judged as correct.

This is especially useful during the practice session, where it is expected that every team can make at least
one correct submission. A team with any other colour than green near the end of the session might be having
difficulties.

4.2 Judging Submissions

4.2.1 Flow of submitted solutions

The flow of an incoming submission is as follows.
1. Team submits solution. It will either be rejected after basic checks, or accepted and stored as a
submission.

2. The first available judgehost compiles, runs and checks the submission. The outcome and outputs are
stored as a judging of this submission.

3. If verification is not required, the result is automatically recorded and the team can view the result
and the scoreboard is updated (unless after the scoreboard freeze). A judge can optionally inspect the
submission and judging and mark it verified.

4. If verification is required, a judge inspects the judging. Only after it has been approved (marked as
verified) will the result be visible outside the jury interface. This option can be enabled by setting
verification_required on the configuration settings admin page.

4.2.2 Submission judging status codes

The interface for jury and teams shows the status of a submission with a code.

QUEUED /PENDING

submission received and awaiting a judgehost to process it *;

CHAPTER 4. DURING THE CONTEST 9

JUDGING
a judgehost is currently compiling/running/testing the submission *;

TOO-LATE

submission received but submitted after the contest ended;

CORRECT

submission correct, problem solved;

COMPILER-ERROR

the compiler gave an error while compiling the program:;

TIMELIMIT

program execution time exceeded the time defined for the problem;

RUN-ERROR
a kind of problem while running the program occurred, for example segmentation fault, division by
zero or exitcode unequal to 0;

NO-OUTPUT

there was no output at all from the program:;

WRONG-ANSWER
the output of the program did not exactly match the expected output;

PRESENTATION-ERROR

the submission only had presentation errors; e.g. difference in whitespace with the reference output.

* in the team interface a submission will only show as PENDING to prevent leaking information of problem
time limits. The jury can see whether a submission is QUEUED or JUDGING. In case of required verification,
a submission will show as PENDING to the team until the judging has been verified.

Under the Submissions menu, you can see submitted solutions, with the newest one at the top. Click on a
submission line for more details about the submission (team name, submittime etc), a list of judgings and
the details for the most recent judging (runtime, outputs, diff with testdata). There is also a switch available
between newest 50, only unverified, only unjudged or all submissions.

Under the submission details the ‘view source code’ link can be clicked to inspect the source code. If the
team has submitted code in the same language for this problem before, a diff output between the current
and previous submission is also available there.

It’s possible to edit the source code and resubmit it as the special ‘domjudge’ user. This does not have any
effect for the teams, but allows a judge to perform a ‘what if this was changed’-analysis.

A submission can have multiple judgings, but only one valid judging at any time. Multiple judgings occur
when rejudging, see 4.2.3 (Rejudging).

4.2.3 Rejudging

In some situations it is necessary to rejudge a submission. This means that the submission will re-enter the
flow as if it had not been judged before. The submittime will be the original time, but the program will be
compiled, run and tested again.

CHAPTER 4. DURING THE CONTEST 10

This can be useful when there was some kind of problem: a compiler that was broken and later fixed, or
testdata that was incorrect and later changed. When a submission is rejudged, the old judging data is kept
but marked as ‘invalid’.

You can rejudge a single submission by pressing the ‘Rejudge’ button when viewing the submission details.
It is also possible to rejudge all submissions for a given language, problem, team or judgehost; to do so, go to
the page of the respective language, problem, team or judgehost, press the ‘Rejudge all’ button and confirm.

Submissions that have been marked as ‘CORRECT’ will not be rejudged. Only DOMjudge admins can
override this restriction for individual submissions.

Teams will not get explicit notifications of rejudgings, other than a potentially changed outcome of their
submissions. It might be desirable to combine rejudging with a clarification to the team or all teams
explaining what has been rejudged and why.

4.2.4 Ignored submissions

Finally, there is the option to ignore specific submissions using the button on the submission page. When
a submission is being ignored, it is as if was never submitted: it is not visible to the team that sent it nor
on the scoreboard. It will show striked through in the jury submissions list though. This can be used to
effectively delete a submission for some reason, e.g. when a team erroneously sent it for the wrong problem.
The submission can also be unignored again.

4.3 Clarification Requests

Communication between teams and jury happens through Clarification Requests. Everything related to that
is handled under the Clarifications menu item.

Teams can use their web interface to send a clarification request to the jury. The jury can send a response
to that team specifically, or send it to all teams. The latter is done to ensure that all teams have the same
information about the problem set. The jury can also send a clarification that does not correspond to a
specific request. These will be termed ‘general clarifications’.

Under Clarifications, three lists are shown: new clarifications, answered clarifications and general clarifica-
tions. It lists the team login, the problem concerned, the time and an excerpt. Click the excerpt for details
about that clarification request.

Every incoming clarification request will initially be marked as unanswered. The menu bar shows the number
of unanswered requests. A request will be marked as answered when a response has been sent. Additionally
it’s possible to mark a clarification request as answered with the button that can be found when viewing the
request. The latter can be used when the request has been dealt with in some other way, for example by
sending a general message to all teams.

An answer to a clarification request is made by putting the text in the input box under the request text.
The original text is quoted. You can choose to either send it to the team that requested the clarification,
or to all teams. In the latter case, make sure you phrase it in such a way that the message is self-contained
(e.g. by keeping the quoted text), since the other teams cannot view the original request.

The menu on every page of the jury interface will mention the number of unanswered clarification requests:
“(1 new)”. This number is automatically updated, even without reloading the page.

D After the contest

Once the contest is over, the system will still accept submissions but will not judge them anymore. Teams
will see this as a ‘TOO-LATE’ response.

If the scoreboard was frozen, it will remain frozen until the time set as unfreeze time, as seen under Contests.
It is possible to publish the final standings at any given moment by pressing the ‘unfreeze now’ button under

contests.

There’s not much more to be done after the contest has ended. The administrator will need to take care of

backing up all system data and submissions, and the awards ceremony can start.

11

A Checktestdata language specification

This specification is dedicated to the public domain. Its authors waive all rights to the work worldwide
under copyright law, including all related and neighboring rights, as specified in the

Creative Commons Public Domain Dedication (CCO 1.0) <http://creativecommons.org/publicdomain/
zero/1.0/> .

Grammar and command syntax below. A valid checktestdata program consists of a list of commands. All
commands are uppercase, while variables are lowercase with non-leading digits. Lines starting with '#’ are
comments and ignored.

The following grammar sub-elements are defined:

integer := 0|-7[1-9][0-9]*

float := -7[0-91+(\. [0-9]1+) 7 ([eE] [+-17[0-9]1+)7

string = "ok

variable := [a-z][a-z0-9]*

value := <integer> | <float> | <variable>

compare := ’<? | ?>? | <=2 | >=7 | == | 2=’

expr 1= <term> | <expr> [+-] <term>

term 1= <term> [*%/] <factor> | <factor>

factor 1= <value> | -’ <term> | ’(’ <expr> ’)’ | <factor> ’~’ <factor>
test 1= 212 <tgest> | ’(° <test> ’)’ | <test> [&]] <test> |

<expr> <compare> <expr> | ’MATCH(’ <string> str ’)’ | ’ISEQF’

That is, integer, as well as floating point values (of arbitrary size and precision) are supported, as well as
operators +-*%/" with the usual rules of precedence. An expression is integer if all its sub-expressions are
integer. Integer division is used on integers. The exponentiation operator ~ only allows non-negative integer
exponents that fit in an unsigned long.

MATCH and ISEQF are special keywords that return whether the next character matches any of ’str’, respec-
tively if end-of-file has been reached.

Within a string, the backslash acts as escape character for the following expressions:

e \[0-71{1,3} denotes an octal escape for a character
e \n, \t, \r, \b denote linefeed, tab, carriage return and backspace
e \" and \\ denote " and \

e an escaped newline is ignored (line continuation)

A backslash preceding any other character is treated as a literal backslash.

The following commands are available:

SPACE / NEWLINE

No-argument commands matching a single space (0x20) or newline respectively.

EQF

Matches end-of-file. This is implicitly added at the end of each program and must match exactly: no
extra data may be present.

12

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

APPENDIX A. CHECKTESTDATA LANGUAGE SPECIFICATION 13

INT(<expr> min, <expr> max [, <variable> name])
Match an arbitrary sized integer value in the interval [min,max] and optionally assign the value read
to variable 'name’.

FLOAT(<expr> min, <expr> max [, <variable> name [, option])
Match a floating point number in the range [min,max| and optionally assign the value read to the
variable 'name’. When the option '"FIXED’ or 'SCIENTIFIC’ is set, only accept floating point numbers
in fixed point or scientific notation, respectively.

STRING(<string> str)
Match the literal string ’str’.

REGEX (<string> str)

Match the extended regular expression ’str’. Matching is performed greedily.

REP(<expr> count [,<command> separator]) [<command>...] END
Repeat the commands between the 'REP() ... END’ statements count times and optionally match
"separator’ command (count-1) times in between. The value of count must fit in a unsigned 32 bit int.
WHILE(<test> condition [,<command> separator]) [<command>...] END

Repeat the commands as long as ’condition’ is true. Optionally match ’separator’ command between
two consecutive iterations.

IF(<test> cond) [<command> cmdsi...] [ELSE [<command> cmds2...]] END

Executes cmdsl if cond is true. Otherwise, executes cmds2 if the else statement is available.

B DOMjudge problem format

This specification is dedicated to the public domain. Its authors waive all rights to the work worldwide
under copyright law, including all related and neighboring rights, as specified in the

Creative Commons Public Domain Dedication (CCO 1.0) <http://creativecommons.org/publicdomain/
zero/1.0/> .

DOMjudge supports the import and export of problems in a zip-bundle format. This zip file contains the

following files in its base directory:

domjudge-problem. ini
This file has a simple INI-syntax and contains problem metadata, see below.

<testdata-file>.in / <testdata-file>.out

Each pair of <testdata-file>.{in,out} contains the input and correct/reference output for a single
test case. Single files without their corresponding in or out counterpart are ignored. The order of the
files in the zip archive determines the initial ordering of the testcases after import.

<solution>.<ext>

Submits code of reference solution as team ’domjudge’ if <ext> is a known language extension. The
contest, the problem, and the language have to be enabled. The contest must be started. If you include
a comment starting with '@éEXPECTED_RESULTS@: ’ followed by the possible outcomes, you can use
the judging verifier in the admin interface to verify the results.

When importing a zip file into DOMjudge, any other files are ignored.

The file domjudge-problem.ini contains key-value pairs, one pair per line, of the form key = value. The
= can optionally be surrounded by whitespace and the value may be quoted, which allows it to contain
newlines. The following keys are supported (these correspond directly to the problem settings in the jury
web interface):

e probid - the problem identifier
e cid - the associated contest identifier
e name - the problem displayed name

e allow_submit - allow submissions to this problem, disabling this also makes the problem invisible to
teams and public

e allow_judge - allow judging of this problem

e timelimit - time limit in seconds per test case

e special_run - suffix tag of a special run script

e special_compare - suffix tag of a special compare script

e color - CSS color specification for this problem

The probid key is required when importing a new problem from the jury/problems.php overview page,
while it is ignored when uploading into an existing problem. All other keys are optional. If they are present,
the respective value will be overwritten; if not present, then the value will not be changed or a default chosen
when creating a new problem. Test data files are added to set of test cases already present. Thus, one can
easily add test cases to a configured problem by uploading a zip file that contains only *.{in,out} files.

14

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

	DOMjudge Overview
	Features
	Copyright and licencing
	Contact

	General
	Judges and Administrators
	Scoreboard

	Before the contest
	Problems and languages
	Verifying testdata
	Testing jury solutions
	Practice Session

	During the contest
	Monitor teams
	Judging Submissions
	Clarification Requests

	After the contest
	Checktestdata language specification
	DOMjudge problem format

