
DOMjudge Administrator’s Manual
by the DOMjudge team Sat, 2 Jun 2012 21:55:00 +0200

This document provides information about DOMjudge installation, configuration and operation for the DOMjudge
administrator. A separate manual is available for teams and for jury members. Document version: c51539e

Contents

1 DOMjudge overview 4

1.1 Features . 4

1.2 Requirements . 4

1.3 Copyright and licencing . 5

1.4 Contact . 6

2 Installation and configuration 7

2.1 Quick installation . 7

2.2 Concepts . 8

2.3 Requirements . 9

2.4 Installation system . 11

2.5 Configuration . 13

2.6 Configuration of languages . 13

2.7 Configuration of special run and compare programs . 13

2.8 Alerting system . 14

2.9 Other configurable scripts . 15

2.10 Submission methods . 15

2.11 Database installation . 15

2.12 Web server configuration . 16

2.13 Logging & debugging . 17

2.14 Installation of a judgehost . 17

2.15 Building and installing the submit client . 18

2.16 (Re)generating documentation and the team manual . 18

2.17 Optional features . 19

2.18 Upgrading . 20

3 Setting up a contest 22

3.1 Configure the contest data . 22

3.2 Contest milestones . 24

2

CONTENTS 3

3.3 Team authentication . 25

3.4 Providing testdata . 26

3.5 Start the daemons . 27

3.6 Check that everything works . 27

3.7 Testing jury solutions . 28

4 Team Workstations 29

5 Web interface 30

5.1 Jury and Administrator view . 30

5.2 The scoreboard . 30

5.3 Balloons . 32

6 Security 33

6.1 Considerations . 33

6.2 Internal security . 33

6.3 Root privileges . 34

6.4 File system privileges . 34

6.5 External security . 35

A Common problems and their solutions 36

A.1 Java compilers and the chroot . 36

A.2 The Sun Java virtual machine (jvm) and memory limits . 36

A.3 Java class naming . 37

A.4 GCJ compiler warnings . 37

A.5 Error: ‘submit_copy.sh failed with exitcode XX’ . 37

A.6 C#/mono support . 38

A.7 Memory limit errors in the web interface . 38

A.8 Compiler errors: ‘runguard: root privileges not dropped’ . 38

B Multi-site contests 39

C DOMjudge and the ICPC validator interface standard 40

D Submitdaemon and the Dolstra protocol 41

D.1 Dolstra protocol requirements . 42

1 DOMjudge overview

DOMjudge is a system for running programming contests like the ACM regional and world championship
programming contests.

This means that teams are on-site and have a fixed time period (mostly 5 hours) and one computer to solve a
number of problems (mostly 6-10). Problems are solved by writing a program in one of the allowed languages,
that reads input according to the problem input specification and writes the correct, corresponding output.

The judging is done by submitting the source code of the solution to the jury. There the jury system compiles
and runs the program and compares the program output with the expected output.

This software can be used to handle the submission and judging during such contests. It also handles
feedback to the teams and communication on problems (clarification requests). It has web interfaces for the
jury, the teams (their submissions and clarification requests) and the public (scoreboard).

1.1 Features

A global overview of the features that DOMjudge provides:

• Automatic judging with distributed (scalable) judge hosts

• Web interface for portability and simplicity

• Modular system for plugging in languages/compilers and more

• Detailed jury information (submissions, judgings) and options (rejudge, clarifications)

• Designed with security in mind

• Has been used in many live contests

• Open Source, Free Software

1.2 Requirements

This is a (rough) list of the requirements for DOMjudge.

• At least one machine running Linux, with local root access

• Apache web server with PHP 5 and PHP-command line interface

• MySQL database server version 4.1.0 or newer

• Compilers for the languages you want to support

A 2.3 (detailed list of requirements) is contained in the 2 (Installation and Configuration) chapter.

4

CHAPTER 1. DOMJUDGE OVERVIEW 5

1.3 Copyright and licencing

DOMjudge was developed by Thijs Kinkhorst, Peter van de Werken and Jaap Eldering at Study Association
A-Eskwadraat , Utrecht University , The Netherlands.

It is Copyright (c) 2004 - 2012 by The DOMjudge Developers.

DOMjudge, including its documentation, is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License <http://www.gnu.org/copyleft/gpl.html> as published by the
Free Software Foundation; either version 2, or (at your option) any later version. See the file COPYING.

This software is partly based on code by other people. These acknowledgements are made in the respective
files, but we would like to name them here too:

• dash (i386) is included, built from the Debian dash sources (copyright various people, see
doc/dash.copyright).

• mkstemps.h and basename.h are modified versions from the GNU libiberty library (copyright Free
Software Foundation).

• lib.database.php by Jeroen van Wolffelaar et al.

• submit.cc and submitdaemon.cc are based on submit.pl and submitdaemon.pl by Eelco Dolstra.

• runguard.c was originally based on timeout from The Coroner’s Toolkit by Wietse Venema.

• sorttable.js by Stuart Langridge.

• jscolor.js by Jan Odvarko.

• The DOMjudge logo is based on the NKP 2004 logo made by Erik van Sebille.

• Several M4 autoconf macros from the Autoconf archive by various people are included under m4/.

1.3.1 Non-GPL licenced parts of DOMjudge

A binary version of the dash shell (statically compiled) is distributed with DOMjudge. This program is
copyright by various people under the BSD licence and a part under the GNUGPL version 2, see COPYING.BSD
and doc/dash.copyright for more details. Sources can be downloaded from:

<http://domjudge.sourceforge.net/sources/> .

The sorttable.js script is copyright by Stuart Langridge and licenced under the MIT/X11 licence, see
COPYING.MIT. This software was downloaded from:

<http://www.kryogenix.org/code/browser/sorttable/> . jscolor.js is copyright Jan Odvarko and li-
cenced under the GNU LGPL. It was obtained at <http://jscolor.com> .

The M4 autoconf macros are licenced under all-permissive and GPL3+ licences; see the respective files for
details.

1.3.2 About the name and logo

The name of this judging system is inspired by a very important and well known landmark in the city of
Utrecht: the dome tower, called the ‘Dom’ in Dutch. The original logo of the 2004 Dutch Programming
Championships (for which this system was originally developed) depicts a representation of the Dom in zeros
and ones. We based the name and logo of DOMjudge on that.

http://www.a-eskwadraat.nl/
http://www.uu.nl/
http://www.gnu.org/copyleft/gpl.html
http://www.nongnu.org/autoconf-archive/
http://domjudge.sourceforge.net/sources/
http://www.kryogenix.org/code/browser/sorttable/
http://jscolor.com

CHAPTER 1. DOMJUDGE OVERVIEW 6

We would like to thank Erik van Sebille, the original creator of the logo. The logo is under a GPL licence,
but Erik suggested a "free as in beer" licence first: you’re allowed to use it, but you owe Erik a free beer in
case might you encounter him.

1.4 Contact

The DOMjudge homepage can be found at: http://domjudge.sourceforge.net/

We have a low volume mailing list for announcements of new releases.

The authors can be reached through the development mailing list: domjudge-devel@lists.a-eskwadraat.nl .
See the list information page for details.

http://domjudge.sourceforge.net/
http://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-announce
mailto:domjudge-devel@lists.a-eskwadraat.nl
http://lists.a-eskwadraat.nl/mailman/listinfo/domjudge-devel

2 Installation and configuration

This chapter details a fresh installation of DOMjudge. The first section is a Quick Installation Reference,
but that should only be used by those already acquainted with the system. A detailed guide follows after
that.

2.1 Quick installation

Note: this is not a replacement for the thorough installation instructions below, but more a cheat-sheet for
those who’ve already installed DOMjudge before and need a few hints. When in doubt, always consult the
full installation instruction.

External software:

• Install the MySQL-server, set a root password for it and make it accessible from all judgehosts.

• Install Apache, PHP and (recommended) phpMyAdmin.

• Make sure PHP works for the web server and command line scripts.

• Install necessary compilers on the judgehosts.

• See also 2.3.3 (an example command line for Debian GNU/Linux).

DOMjudge:

• Extract the source tarball and run ./configure [–enable-fhs] –prefix=<basepath>.

• Run make domserver judgehost docs or just those targets you want installed on the current host.

• Run make install-{domserver,judgehost,docs} as root to install the system.

On the domserver host:

• Install the MySQL database using bin/dj-setup-database -u root -r install on the domserver
host.

• Add etc/apache.conf to your Apache configuration, edit it to your needs, reload web
server: sudo ln -s .../domserver/etc/apache.conf /etc/apache2/conf.d/domjudge.conf &&
sudo apache2ctl graceful

• Check that the web interface works (/team, /public and /jury) and check that the jury interface is
password protected. Optionally add (more) users to etc/htpasswd-{jury,plugin}.

• Add useful contest data through the jury web interface or with phpMyAdmin.

• Run the config checker in the jury web interface.

On the judgehosts:

• RedHat: useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run
Debian: useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run
(check specific options of useradd, since these vary per system)

7

CHAPTER 2. INSTALLATION AND CONFIGURATION 8

• Copy the file etc/dbpasswords.secret from the domserver to all judgehosts to synchronise database
passwords.

• Start the judge daemon: bin/judgedaemon

It should be done by now. As a check that (almost) everything works, the set of test sources can be submitted:

cd tests
make check
./check-judgings

The check-judgings script automatically verifies most of the test sources, except for a few with mul-
tiple possible outcomes; these have to be verified by hand. Read the sources for a description of what
should (not) happen. You may want to change the AUTH_METHOD to FIXED and set the environment variable
SUBMITBASEURL to your DOMjudge base URL, e.g. http://domjudge.example.com/.

Optionally:

• Install the submit client on the team workstations.

• Generate one-time passwords for all the teams in the web interface.

• Further tighten the security of the system, e.g. by applying firewall rules.

• Start the balloon notification daemon: cd bin; ./balloons; or use the balloon web interface.

• Setup the Java chroot environment on the judgehosts to use Sun Java with chroot:
bin/dj_make_chroot <chrootdir> <architecture>
$EDITOR judge/chroot-startstop.sh
enable the chroot-startstop.sh script in etc/judgehost-config.php and add the following lines
to /etc/sudoers:
domjudge ALL=(root) NOPASSWD: /bin/mount -n -t proc –bind /proc proc
domjudge ALL=(root) NOPASSWD: /bin/umount /*/proc
domjudge ALL=(root) NOPASSWD: /bin/mount –bind <chrootdir>/*
domjudge ALL=(root) NOPASSWD: /bin/umount JUDGEDIR/*

• Install GeSHI or the PEAR Text_Highlighter class for source syntax highlighting, and the PHP xdiff
PECL extension for diffs between submissions.

2.2 Concepts

This manual assumes you are aware of some of the concepts used within DOMjudge. Here’s an overview.

DOMjudge discerns three different kinds of hosts:

Team computer

Workstation for a team, where they develop their solutions and from which they submit them to the
jury system. The only part of DOMjudge that runs here is the optional command line submit client;
all other interaction by teams is done with a browser via the web interface.

DOMjudge server

A host that receives the submissions, runs the database and serves the web pages. This host will run
Apache, and MySQL. Optionally these tasks can be further split out to separate machines, but that’s
normally not necessary and not supported out of the box.

CHAPTER 2. INSTALLATION AND CONFIGURATION 9

Judgehosts

A number of hosts, at least one, that will retrieve submitted solutions from the DOMjudge server,
compile and run them and send the results back to the server. Since this is computationally intensive,
there should ideally be at least a couple of these. They will run the judgedaemon from DOMjudge.
For security and performance reasons it is highly recommended not to use the server as a judgehost.

Note that the judges (persons) are not required and not recommended to work on any of the DOMjudge
server or judgehosts. They can just access the system via the jury web interface and working e.g. on
judgehosts can interfere with system stability.

2.3 Requirements

2.3.1 System requirements

The requirements for the deployment of DOMjudge are:

• Computers for the domserver and judgehosts must run Linux or a Unix variant. This software has been
developed mostly under Debian GNU/Linux and has been tested a bit under other Linux distributions
and FreeBSD. We try to adhere to POSIX standards.

• (Local) root access on the jury computers for installing some programs setuid-root, some files with re-
stricted permissions and for (un)mounting the proc file system when using Sun Java. See 6.3 (Security:
root privileges) for more details.

• A TCP/IP network which connects all jury and team computers. Extra network security which restricts
internet access and access to other services (ssh, mail, talk, etc..) is advisable, but not provided by
this software, see 6.5 (Security: external security) for more details. TCP/IP networking is used in a
few different ways:

– The judgehosts use TCP/IP connections to connect to the MySQL database on port 3306.

– HTTP traffic from teams, the public and jury to the web server, port 80 or 443.

– The ‘submit’ command line client connects to the web server also via HTTP.

When using the IP_ADDRESS authentication scheme, then each team computer needs to have a
unique IP address from the view of the DOMjudge server, see 3.3 (Contest setup: team authentication)
for more details.

2.3.2 Software requirements

The following software is required for running DOMjudge.

• For every supported programming language a compiler is needed; preferably one that can generate
statically linked stand-alone executables.

• Apache web server with support for PHP >= 5.0.0 and the mysql extension for PHP. We also recom-
mend the posix extension for extra debugging information.

• MySQL >= 4.1.x database and client software

• PHP >= 5.0.0 command line interface and the mysql extension.

• Bash >= 2

CHAPTER 2. INSTALLATION AND CONFIGURATION 10

• A POSIX compliant shell in /bin/sh (e.g. bash or ash)

• A statically compiled POSIX shell, located in lib/judge/sh-static (dash is included for Linux IA32)

• glibc >= 2.1

• A lot of standard (GNU) programs, a probably incomplete list: hostname, date, dirname, basename,
touch, chmod, cp, mv, cat, grep, diff, wc, mkdir, mkfifo, mount, sleep, head, tail, pgrep

• Apache htpasswd

• xsltproc

from the GNOME XSLT library package.

• A LaTeX installation to regenerate the team PDF-manual with site specific configuration settings
included.

The following items are optional, but may be required to use certain functionality.

• sudo (to use a chroot judging environment with Sun Java)

• phpMyAdmin , to be able to access the database in an emergency or for data import/export

• An NTP daemon (for keeping the clocks between jury system and judgehosts in sync)

• libcurl (to use the command line submit client with the web interface)

• libmagic (for command line submit client to detect binary file submissions)

• GeSHi or PEAR Text_Highlighter class (to use syntax highlighting in the Show Source section of
the jury interface)

• PECL xdiff extension (to reliably make diffs between submissions, DOMjudge will try alternative
approaches if it’s not available)

• beep for audible notification of errors, submissions and judgings, when using the default alert script.

Software required for building DOMjudge from distributed sources.

• gcc and g++ with standard libraries

• GNU make

• The Boost regular expression library and the GNU Multiple Precision library to build the
checktestdata program for advanced checking of input/output data correctness.

Additional software required for building DOMjudge from a Git repository checkout.

• The GNU autoconf/automake toolset

• Flex and bisonc++ for generating the parsing code of the optional checktestdata script.

• Linuxdoc and Xfig/transfig to build the admin and judge documentation from SGML sources and a
LaTeX installation to generate the PDF admin, judge and default team manual.

http://xmlsoft.org/XSLT/index.html
http://www.phpmyadmin.net/
http://curl.haxx.se/libcurl/
http://www.darwinsys.com/file/
http://qbnz.com/highlighter
http://pear.php.net/package/Text_Highlighter/
http://pecl.php.net/package/xdiff
http://www.johnath.com/beep/
http://www.boost.org/
http://www.boost.org/doc/libs/release/libs/regex/
http://gmplib.org/
http://bisoncpp.sourceforge.net/

CHAPTER 2. INSTALLATION AND CONFIGURATION 11

2.3.3 Requirements for team workstations

In the most basic setup the team workstations only need (next to the tools needed for program development)
a web browser. The web interface fully works with any known browser, with the exception of notification of
new clarifications in the menu bar. That can be updated without reloading the page by using AJAX. This
is supported by any reasonably current browser with JavaScript enabled.

2.3.4 Debian installation command

For your convenience, the following command will install needed software on the DOMjudge server as men-
tioned above when using Debian GNU/Linux, or one of its derivate distributions. Most systems will have
the bulk of these packages installed already.

apt-get install gcc g++ make libcurl4-gnutls-dev mysql-server \
apache2 php5 php5-cli libapache2-mod-php5 php5-mysql php-geshi \
ntp sudo procps sharutils \
phpmyadmin xsltproc libboost-regex-dev libgmp3-dev \
linuxdoc-tools transfig texlive-latex-recommended texlive-latex-extra

This is for Debian 5.0 "Lenny", for Debian 4.0 "Etch", replace libcurl4-gnutls-dev with libcurl3-dev.

On a judgehost, the following should be sufficient. The last line shows some example compilers to install for
C, C++, Java (GNU), Java (Sun), Haskell and Pascal; change the list as appropriate.

apt-get install make sudo php5-cli php5-mysql ntp xsltproc procps sharutils \
gcc g++ gcj openjdk-6-jre-headless ghc fp-compiler

2.4 Installation system

The DOMjudge build/install system consists of a configure script and makefiles, but when installing it,
some more care has to be taken than simply running ’./configure && make && make install’. DOMjudge
needs to be installed both on the server and on the judgehosts. These require different parts of the complete
system to be present and can be installed separately. Within the build system these parts are referred to as
domserver, judgehost and additionally docs for all documentation.

When installing from a Git checkout, the configure/build system first has to be bootstrapped. This can
be done by running make dist, which creates the configure script and generates documentation from
SGML/LaTeX sources. Note that this requires additional software as specified in the 2.3 (software require-
ments).

There are three different methods for installing DOMjudge:

Single directory tree

With this method all DOMjudge related files and programs are installed in a single directory tree which
is specified by the prefix option of configure, like

./configure --prefix=$HOME/domjudge

This will install each of the domserver, judgehost, docs parts in a subdirectory
$HOME/domjudge/domserver etc. Note that these subdirectories can be overridden from the

CHAPTER 2. INSTALLATION AND CONFIGURATION 12

defaults with options like –with-domserver_root=DIR, see configure –help for a complete list. The
prefix defaults to /opt/domjudge.

Besides the installed files, there will also be directories for logging, temporary files, submitted sources
and judging data:

log

contains all log files.

tmp

contains temporary files.

submissions

(optionally) on the domserver contains all correctly submitted files: as backup only, the database
is the authoritative source. Note that this directory must be writable by the web server for this
feature to work.

judgings

location on judgehosts where submissions are tested, each in its own subdirectory. The system
needs root access to this directory! (for chroot and mounting of proc-fs).

This method of installation is the default and probably most practical for normal purposes as it keeps
all files together, hence easily found.

FHS compliant

This method installs DOMjudge in directories according to the Filesystem Hierarchy Standard . It can
be enabled by passing the option –enable-fhs to configure and in this case the prefix defaults to
/usr/local. Files will be placed e.g. in PREFIX/share/domjudge, PREFIX/bin, /var/log, /tmp,
/etc/domjudge.

Maintainer install

The last installation method is meant for developers/maintainers of DOMjudge and does an in-place
installation within the source tree. This allows one to immediately see effects when modifying code.

This method requires some special steps which can most easily be run via makefile rules as follows:

make maintainer-conf [CONFIGURE_FLAGS=<extra options for ./configure>]
make maintainer-install

Note that these targets have to be executed separately and the latter requests root privileges via su.

After running the configure script, the system can be built and installed. Each of the domserver,
judgehost, docs parts can be built and installed separately, respectively by:

make domserver && sudo make install-domserver
make judgehost && sudo make install-judgehost
make docs && make install-docs

Note that even when installing e.g. in your own home directory, root privileges are still required for domserver
and judgehost installation, because user and group ownership of password files, some directories and the
setuid-root program runguard have to be set. One should not run DOMjudge programs under the root user
however, but under a normal user: runguard is specifically installed setuid-root to make this unnecessary and
running as root will give rise to problems, see A.8 (runguard: root privileges not dropped) in the common
problems section.

For a list of basic make targets, run make in the source root directory without arguments.

http://www.pathname.com/fhs/

CHAPTER 2. INSTALLATION AND CONFIGURATION 13

2.4.1 Makefile structure

The following information is meant for developers or other people who want to make changes to the sources.

The Makefiles in the source tree use a recursion mechanism to run make targets within the relevant sub-
directories. The recursion is handled by the REC_TARGETS and SUBDIRS variables and the recursion step is
executed in Makefile.global. Any target added to the REC_TARGETS list will be recursively called in all
directories in SUBDIRS. Moreover, a local variant of the target with -l appended is called after recursing into
the subdirectories, so recursion is depth-first.

The targets dist, clean, distclean, maintainer-clean are recursive by default, which means that these
call their local -l variants in all directories containing a Makefile. This allows for true depth-first traversal,
which is necessary to correctly run the *clean targets: otherwise e.g. paths.mk will be deleted before
subdirectory *clean targets are called that depend on information in it.

2.5 Configuration

Configuration of the judge system is mostly done by editing the configuration file(s) in etc:
domserver-config.php, judgehost-config.php, common-config.php for the configuration options of
the domserver, judgehost and shared configuration options respectively. The latter should be synchronised
between domserver and judgehosts. Descriptions of settings are included in these files.

Besides these settings, there are a few other places where changes can be made to the system, see 2.9 (other
configurable scripts).

2.6 Configuration of languages

Configuration of the compilers of the supported languages should be done separately. For each supported
language a shell-script named compile_<lang>.sh should be created and placed in lib/judge on the
judgehosts, where <lang> is the ID of the language as specified in the database. For more information,
see for example compile_c.sh, and compile.sh in lib/judge for syntax. Note that compile scripts are
included for the most common languages already.

Interpreted languages and non-statically linked binaries can in principle also be used, but then the option
USE_CHROOT should be disabled (or all dependencies be added to the chroot environment). Interpreted
languages do not generate an executable and in principle do not need a compilation step. However, to be able
to use interpreted languages (also Sun’s Java), a script must be generated during the compilation step, which
will function as the executable: the script must run the interpreter on the source. See compile_perl.sh
and compile_java_javac.sh in lib/judge for examples.

DOMjudge supports the use of Sun Java within a chroot environment. For this, a chroot environment
which includes the Sun Java libraries must first be built. This can be accomplished with the included script
dj_make_chroot: run this as root and pass as arguments the target directory to build the chroot environment
in and as second argument the target machine architecture. Start the script without arguments for usage
information. See also sections 2.14 (Installation of a judgehost) and A.1 (Problems: Java & chroot).

2.7 Configuration of special run and compare programs

To allow for problems that do not fit within the standard scheme of fixed input and/or output, DOMjudge
has the possibility to change the way submissions are run and checked for correctness.

CHAPTER 2. INSTALLATION AND CONFIGURATION 14

The back-end scripts (compile.sh, testcase_run.sh) that handle the compilation, running and checking of
submissions, call separate programs for running and comparison of the results. These can be specialised and
adapted to the requirements per problem. For this, one has to create programs or scripts run_<some-tag>
and/or compare_<some-tag> in the lib/judge directory (see run and compare for examples and usage
information). Then one must specify this <some-tag> in the special_run and/or special_compare fields of
the problem entry in the MySQL database (empty means that the default script should be used).

Implementing a special compare script, also called a validator , can be done in two ways: either write a
program that is called directly (by testcase_run.sh) or use (a copy of) the compare_program.sh script.
The latter generates the XML result file and handles redirection of input/output for you. When using this
wrapper (the easiest method), the jury should write a checker program which can be called as

$CHECK_PROGRAM <testdata.in> <program.out> <testdata.out>

and this program should write some kind of difference to stdout. No output results in a correct verdict and
a nonzero exitcode in an internal (system) error. The script compare_program.sh as shipped is configured
to call check_float, which compares floating point numbers.

For example, to compare output while ignoring DOS/UNIX newline differences, one can copy
compare_program.sh to compare_dos_newline_OK and in that file set the variable CHECK_PROGRAM="‘which
diff‘" and replace the line

"$CHECK_PROGRAM" $CHECK_OPTIONS "$TESTIN" "$PROGRAM" "$TESTOUT" > "$DIFFOUT"

by the lines

sed -i ’s/\r$//’ "$TESTOUT"
sed ’s/\r$//’ "$PROGRAM" | diff -a - "$TESTOUT" > "$DIFFOUT"

Note that these commands will modify the local copy of the jury testdata, but the original output generated
by the team’s solution is retained, and a plain diff output is generated. Next, for each problem that you
want to use this validator for, set the special_compare field to dos_newline_OK. As an alternative to this
modified validator script, one can accept presentation errors as correct answers by uncommenting the line

’presentation-error’ => ’correct’,

in the RESULTS_REMAP array in the file etc/judgehost-config.php, and changing the RESULTS_PRIO order-
ing such that presentation-error has lower priority than no-answer.

For more details on modifying validator scripts, see the comments at the top of the files testcase_run.sh,
compare_program.sh and (when not using the wrapper) the appendix on the C (ICPC validator interface).

DOMjudge supports a presentation-error result. The default compare program returns this result
when output only differs by whitespace; this is counted as an incorrect submission. The wrapper script
compare_program.sh does not support presentation error results however.

2.8 Alerting system

DOMjudge includes an alerting system. This allows the administrator to receive alerts when important
system events happen, e.g. an error occurs, or a submission or judging is made.

These alerts are passed to a plugin script alert which can easily be adapted to fit your needs. The default
script emits different beeping sounds for the different messages when the beep program is available, but it
could for example also be modified to send a mail on specific issues, connect to monitoring software like
Nagios, etc. For more details, see the script lib/alert.

CHAPTER 2. INSTALLATION AND CONFIGURATION 15

2.9 Other configurable scripts

There are a few more places where some configuration of the system can be made. These are sometimes
needed in non-standard environments.

• In bin/dj_make_chroot on a judgehost some changes to variables can be made, most notably
DEBMIRROR to select a Debian mirror site near you.

• Optional scripts submit/submit_copy.sh and lib/judge/chroot-startstop.sh can be modified to
suit your local environment. See comments in those files for more information.

2.10 Submission methods

DOMjudge supports two submission methods: via the command line submit program and via the web
interface. From experience, both methods have users that prefer the one above the other.

The command line submit client can send submissions by either using the web interface internally (http
protocol, the default), or using a special command line submit protocol, called Dolstra. The latter has some
special features but is not usually needed. See D (Submitdaemon and the Dolstra protocol) for details on
this.

Using the http protocol with the submit client requires the libcURL library development files at compile
time (the submit client is statically linked to libcURL to avoid a runtime dependency).

The database is the authoritative version for submission sources; file system storage is available as an easy
way to access the source files and as backup. The program bin/restore_sources2db is available to recover
the submission table in the database from these files. The command line daemon will automatically store
sources on the file system; the web server needs write permissions on SUBMITDIR and ignores file system
storage if these permissions are not set.

2.11 Database installation

DOMjudge uses a MySQL database server for information storage.

The database structure and privileges are included in MySQL dump files in the sql subdirectory. The
default database name is domjudge. This can be changed manually in the etc/dbpasswords.secret file:
the database name as specified for the jury user will be used when installing.

Installation of the database is done with bin/dj-setup-database. For this, you need an installed and
configured MySQL server and administrator access to it. Run

dj-setup-database [-u <admin_user>] [-p <password>|-r] install

to create the database, users and insert some default/example data into the domjudge database. The option
-r will prompt for a password; when no user is specified, the mysql client will try to read credentials from
$HOME/.my.cnf as usual. The command uninstall can be passed to dj-setup-database to remove the
DOMjudge database and users; this deletes all data!

The domjudge database contains a number of tables, some of which need to be manually filled with data
before the contest can be run. See the 3.1 (database section of Contest setup) for details.

CHAPTER 2. INSTALLATION AND CONFIGURATION 16

2.11.1 Fine tuning settings

It may be desirable or even necessary to fine tune some MySQL default settings:

• max_connections: The default 100 is too low, because of the connection caching by Apache threads.
1000 is more appropriate.

• max_allowed_packet: The default of 16MB might be too low when using large testcases. This should
be changed both in the mysql server and client configuration.

• skip-networking or bind-address: By default MySQL only listens on a local socket, but judgehosts
need to connect remotely to it. When enabling remote connections, you may want to limit it to only
the IP’s of judgehosts in the MySQL user configuration (or with firewall rules).

• Root password: MySQL does not have a password for the root user by default. It’s very desirable to
set one.

• When maximising performance is required, you can consider to use the Memory (formerly Heap) table
for the scoreboard_public and scoreboard_jury tables. They will be lost in case of a full crash, but
can be recalculated from the jury interface.

2.11.2 Setting up replication or backups

The MySQL server is the central place of information storage for DOMjudge. Think well about what to do
if the MySQL host fails or loses your data.

A very robust solution is to set up a replicating MySQL server on another host. This will be a hot copy of
all data up to the second, and can take over immediately in the event of failure. The MySQL manual has
more information about setting this up.

Alternatively, you can make regular backups of your data to another host, for example with mysqldump, or
use a RAID based system.

Replication can also be used to improve performance, by directing all select-queries to one or more replicated
slave servers, while updates will still be done to the master. This is not supported out of the box, and will
require making changes to the DOMjudge source.

2.12 Web server configuration

For the web interface, you need to have a web server (e.g. Apache) installed on the jury system and made
sure that PHP correctly works with it. Refer to the documentation of your web server and PHP for details.

You should turn PHP’s magic_quotes_* options off. We also recommend to turn off register_globals. If
you want to upload large testcases in the jury web interface, it may be necessary to raise some PHP limits or
you’ll get "memory exhausted" errors. Make sure that the parameters memory_limit, upload_max_filesize
and post_max_size in php.ini are all well above the size of your largest testcase.

To configure the web server for DOMjudge, use the Apache configuration snippet from etc/apache.conf. It
contains examples for configuring the DOMjudge pages with an alias directive, or as a virtualhost, optionally
with SSL; it also contains PHP and security settings. The Apache configuration snippet by default includes
HTTP basic-auth authentication to the jury and plugin interfaces. A default user domjudge_jury with
password equal to that in etc/dbpasswords.secret is set for the jury interface. Additional users can be
added with the htpasswd program to either file etc/htpasswd-{jury,plugin}. Reload the web server for
changes to take effect.

CHAPTER 2. INSTALLATION AND CONFIGURATION 17

See also section 6.4.1 (Security: webserver privileges) for some details on file permissions for the
etc/dbpasswords.secret and etc/htpasswd-{jury,plugin} files.

2.13 Logging & debugging

All DOMjudge daemons and web interface scripts support logging and debugging in a uniform manner via
functions in lib.error.*. There are three ways in which information is logged:

• Directly to stderr for daemons or to the web page for web interface scripts (the latter only on serious
issues).

• To a log file set by the variable LOGFILE, which is set in each program. Unsetting this variable disables
this method.

• To syslog. This can be configured via the SYSLOG configuration variable in etc/common-config.php.
This option gives the flexibility of syslog, such as remote logging. See the syslog(daemon) documenta-
tion for more information. Unsetting this variable disables this method.

Each script also defines a default threshold level for messages to be logged to stderr (VERBOSE: defaults to
LOG_INFO in daemons and LOG_ERROR in the web interface) and for log file/syslog (LOGLEVEL: defaults to
LOG_DEBUG).

In case of problems, it is advisable to check the logs for clues. Extra debugging information can be obtained
by setting the config option DEBUG to a bitwise-or of the available DEBUG_* flags in etc/common-config.php,
to e.g. generate extra SQL query and timing information in the web interface.

2.14 Installation of a judgehost

A few extra steps might need to be taken to completely install and configure a judgehost.

For running solution programs under a non-privileged user, a user has to be added to the system(s) that
act as judgehost. This user does not need a home-directory or password, so the following command would
suffice to add a user ‘domjudge-run’ with minimal privileges.

On RedHat:

useradd -d /nonexistent -g nobody -M -n -s /bin/false domjudge-run

On Debian:

useradd -d /nonexistent -g nogroup -s /bin/false domjudge-run

For other systems check the specifics of your useradd command. This user must also be configured as the
user under which programs run via configure –enable-runuser=USER; the default is domjudge-run.

When the chroot setting is enabled (default), a static POSIX shell has to be available for copying it to the
chroot environment. For Linux i386, a static Dash shell is included, which works out of the box. For other
architectures or operating systems, a shell has to be added manually. Then simply point the lib/sh-static
symlink to this file.

If you use the default chroot-startstop.sh script, then the following lines must be added to /etc/sudoers:

CHAPTER 2. INSTALLATION AND CONFIGURATION 18

domjudge ALL=(root) NOPASSWD: /bin/mount -n -t proc --bind /proc proc
domjudge ALL=(root) NOPASSWD: /bin/umount /*/proc
domjudge ALL=(root) NOPASSWD: /bin/mount --bind <chrootdir>/*
domjudge ALL=(root) NOPASSWD: /bin/umount JUDGEDIR/*

Here the user domjudge must be replaced by the user you intend to run the judgedaemon as, <chrootdir>
by the path the chroot environment was installed to and JUDGEDIR by the value of judgehost_judgedir
specified by configure. Note that <chrootdir> is different from CHROOTDIR as specified in configure;
the first is the tree from which bind-mounts are made when Sun Java is used, the latter the directory
under which judgings are allowed to be executed in a chroot environment, and this path is by default set to
judgehost_judgedir.

2.15 Building and installing the submit client

The submit client can be built with make submitclient. There is no make target to install the submit
client, as its location will very much depend on the environment. You might e.g. want to copy it to all team
computers or make it available on a network filesystem. Note that if the team computers run a different
(version of the) operating system than the jury systems, then you need to build the submit client for that
OS.

The submit client needs to know the address of the domserver. This can be passed as a command line option
or environment variable. The latter option makes for easier usage. A sample script submit_wrapper.sh is
included, which sets this variable. See that script for more details on how to set this up.

2.15.1 The submit client under Windows/Cygwin

The submit client can also be built under Windows when the Cygwin environment is installed. First the
Cygwin setup.exe <http://cygwin.com/setup.exe> program must be downloaded and installed with GCC,
curl-devel and maybe some more packages included.

When Cygwin is correctly installed with all necessary development tools, the submit binary can be created
by running configure followed by make submit.exe in the submit directory.

2.16 (Re)generating documentation and the team manual

There are three sets of documentation available under the doc directory in DOMjudge:

the admin-manual

for administrators of the system (this document),

the judge-manual

for judges, describing the jury web interface and giving some general information about this system,

the team-manual

for teams, explaining how to use the system and what restrictions there are.

The team manual is only available in PDF format and must be built from the LaTeX sources in doc/team after
configuration of the system. A prebuilt team manual is included, but note that it contains default/example
values for site-specific configuration settings such as the team web interface URL and judging settings such

http://cygwin.com/setup.exe

CHAPTER 2. INSTALLATION AND CONFIGURATION 19

as the memory limit. We strongly recommend rebuilding the team manual to include site-specific settings
and also to revise it to reflect your contest specific environment and rules.

Besides a standard LaTeX installation, the team manual requires the svn and expdlist packages. These are
available in TeX Live in the texlive-latex-extra package in any modern Linux distribution. Alternatively,
you can download and install them manually from their respective subdirectories in <http://mirror.ctan.
org/macros/latex/contrib> .

When the docs part of DOMjudge is installed and site-specific configuration set, the team manual can
be generated with the command genteammanual found under docs/team. The PDF document will be
placed in the current directory or a directory given as argument. The option -w WEBBASEURI can be
passed to set the base URI of the DOMjudge webinterface; it should end with a slash and defaults to
http://example.com/domjudge/. The following should do it on a Debian-like system:

sudo apt-get install make transfig texlive-latex-extra texlive-latex-recommended
cd .../docs/team
./genteammanual [-w http://your.location.example.com/domjudge/] [targetdir]

The team manual is currently available in two languages: English and Dutch. We welcome any translations
to other languages.

The administrator’s and judge’s manuals are available in PDF and HTML format and prebuilt from SGML
sources. Rebuilding these is not normally necessary. To rebuild them on a Debian-like system, the following
commands should do it:

sudo apt-get install linuxdoc-tools make transfig texlive-latex-recommended
make -C doc/admin docs
make -C doc/judge docs

2.17 Optional features

2.17.1 Source code syntax highlighting

To support coloured display of submitted source code in the jury interface, two external classes of syntax
highlighters are supported:

GeSHi <http://qbnz.com/highlighter> and the

PEAR <http://pear.php.net>

Text_Highlighter class <http://pear.php.net/package/Text_Highlighter/> . DOMjudge tries to find
either of those in your PHP include path. When none are found, DOMjudge falls back to source code display
without highlighting.

GeSHi

If you run a Debian-like system, you can simply install the php-geshi package. If not, download GeSHi
and place geshi.php and the geshi/ directory in DOMjudge’s LIBWWWDIR (see domserver-static.php for the
exact path).

http://mirror.ctan.org/macros/latex/contrib
http://mirror.ctan.org/macros/latex/contrib
http://qbnz.com/highlighter
http://pear.php.net
http://pear.php.net/package/Text_Highlighter/

CHAPTER 2. INSTALLATION AND CONFIGURATION 20

PEAR Text Highlighter

You can install the Text Highlighter system wide with the PEAR-provided tools, like this: pear install
Text_Highlighter.

Alternatively you can download the source code from the Text_Highlighter website and unpack that
under the LIBWWWDIR directory (see domserver-static.php for the exact path). Rename the resulting
Text_Highlighter-x.y.z directory to just Text.

2.17.2 NTP time synchronisation

We advise to install an NTP-daemon (Network Time Protocol) to make sure the time between jury computer
and judgehost (and team computers) is in sync.

2.17.3 The plugin web interface

Next to the public, team and jury web interfaces, DOMjudge also provides a plugin web interface. This web
interface is still in development so subject to change. The interface provides contest data from DOMjudge
in XML format and is meant to provide external programs (plugins) with data on the contest. This allows
for all kinds of extensions beyond the core functionality of DOMjudge such as providing a fancy scoreboard
with more statistics, aggregation of scoreboard data for a final presentation during the prize ceremony.

As we are still thinking about possible uses and thus the data to be provided, the exact specification of this
interface may change. Also, we are especially interested in feedback and ideas.

There are currently two data-sets provided within the plugin subdirectory of the DOMjudge web interface,
both in XML format:

scoreboard.php

This page provides a representation of the scoreboard. Additionally it includes legend tables for
problems, languages, affiliations and team categories. It does not accept any arguments.

event.php

This page provides a representation of events that happened during the contest, including submissions,
judgings, contest state changes and general clarifications. This page accepts two arguments fromid
and toid to limit the output to events with event ID in that range.

See these pages or the accompanying xsd-files for the exact structure.

2.18 Upgrading

There is some support to upgrade DOMjudge to newer versions. Note that this functionality is not extensively
tested, so when you plan to upgrade, you are strongly advised to backup the DOMjudge database and other
data before continuing . We also advise to check the ChangeLog file for important changes.

Upgrading the filesystem installation is probably best done by installing the new version of DOMjudge in a
separate place and transferring the configuration settings from the old version.

There are SQL upgrade scripts to transform the database including its data to the layout of a newer version.
The scripts can be found under sql/upgrade and each script applies changes between two consecutive
DOMjudge versions. At the beginning of each script, a check is performed which will let MySQL bail out

CHAPTER 2. INSTALLATION AND CONFIGURATION 21

with an error if it should not be applied anymore. Note that the scripts must be applied in order (sorted by
release). These scripts can be applied by running dj-database-setup upgrade.

3 Setting up a contest

After installation is successful, you want to run your contest! Configuring DOMjudge to run a contest (or a
number of them, in sequence) involves the following steps:

• Configure the contest data;

• Set up authentication for teams;

• Supply in- and output testdata;

• Check that everything works.

3.1 Configure the contest data

DOMjudge stores and retrieves most of its data from the MySQL database. Some information must be filled
in beforehand, other tables will be populated by DOMjudge.

You can use the jury web interface to add, edit and delete most types of data described below. It’s advised to
keep a version of phpMyAdmin handy in case of emergencies, or for general database operations like import
and export.

This section describes the meaning of each table and what you need to put into it. Tables marked with an
‘x’ are the ones you have to configure with contest data before running a contest (via the jury web interface
or e.g. with phpMyAdmin), the other tables are used automatically by the software:

clarification Clarification requests/replies are stored here.
x configuration Runtime configuration settings.
x contest Contest definitions with start/end time.

event Log of events during contests.
x judgehost Computers (hostnames) that function as judgehosts.

judging Judgings of submissions.
judging_run Result of one testcase within a judging.

x language Definition of allowed submission languages.
x problem Definition of problems (name, corresponding contest, etc.).

submission Submissions of solutions to problems.
x team Definition of teams.
x team_affiliation Definition of institutions a team can be affiliated with.
x team_category Different category groups teams can be put in.

team_unread Records which clarifications are read by which team.
x testcase Definition of testdata for each problem.

scoreboard_jury Cache of the scoreboards for public/teams and for the jury
scoreboard_public separately, because of possibility of score freezing.

Now follows a longer description (including fields) per table that has to be filled manually. As a general
remark: almost all tables have an identifier field. Most of these are numeric and automatically increasing;
these do not need to be specified. The tables language, problem, team, and team_affiliation have text
strings as identifier fields. These need to be manually specified and only alpha-numeric and underscore
characters are valid, i.e. a-z, A-Z, 0-9 and _.

22

CHAPTER 3. SETTING UP A CONTEST 23

configuration

This table contains configuration settings and is work in progress. These entries are simply stored as
name, value pairs.

contest

The contests that the software will run. E.g. a test session and the live contest.

cid is the reference ID and contestname is a descriptive name used in the interface.

activatetime, starttime and endtime are required fields and specify when this contest is active and
open for submissions. Optional freezetime and unfreezetime control scoreboard freezing. For a
detailed treating of these, see section 3.2 (Contest milestones).

The enabled field can be unset to allow for easier editing of contest times, as disabled contests are not
checked to overlap with other contests. A disabled contest will also not become active.

judgehost

List here the hosts that will be judging the submissions. hostname is the (short) hostname of a judge
computer. active indicates whether this host should judge incoming submissions. polltime is an
internally used variable to detect whether a judgedaemon is running on the host.

language

Programming languages in which to accept and judge submissions. langid is a string of maximum
length 8, which references the language. This reference is also used to call the correct compile script
(lib/judge/compile_c.sh, etc.), so when adding a new language, check that these match.

name is the displayed name of the language; extension the internally used filename extension for that
language, which has to match the first extension as listed in the global configuration file.

allow_submit determines whether teams can submit using this language; allow_judge determines
whether judgehosts will judge submissions for this problem. This can for example be set to no to
temporarily hold judging when a problem occurs with the judging of a specific language; after resolution
of the problem this can be set to yes again.

time_factor is the relative factor by which the timelimit is multiplied for solutions in this language.
For example Java is/was known to be structurally slower than C/C++.

problem

This table contains the problem definitions. probid is the reference ID, cid is the contest ID this
problem is (only) defined for: a problem cannot be used in multiple contests. name is the full name
(description) of the problem.

allow_submit determines whether teams can submit solutions for this problem. Non-submittable
problems are also not displayed on the scoreboard. This can be used to define spare problems, which
can then be added to the contest quickly; allow_judge determines whether judgehosts will judge
submissions for this problem. See also the explanation for language.

timelimit is the timelimit in seconds within which solutions for this problem have to run (taking into
account time_factor per language).

special_run if not empty defines a custom run program run_<special_run> to run compiled sub-
missions for this problem and special_compare if not empty defines a custom compare program
compare_<special_compare> to compare output for this problem.

The color tag can be filled with a CSS colour specification to associate with this problem; see also
section 5.2.1 (Scoreboard: colours).

CHAPTER 3. SETTING UP A CONTEST 24

team

Table of teams: login is the account/login-name of the team (which is referenced to in other tables as
teamid) and name the displayed name of the team. categoryid is the ID of the category the team is
in; affilid is the affiliation ID of the team.

authtoken is a generic field used by several of the supported authentication mechanisms to store a
piece of information it needs to identify the team. The content of the field for each of the mechanisms
is:

• IPADDRESS: field contains the IP address of the team’s workstation

• PHP_SESSIONS: contains a hash of the password that the team can log in with

members are the names of the team members, separated by newlines and room is the room the team
is located, both for display only; comments can be filled with arbitrary useful information and is
only visible to the jury. The timestamp teampage_first_visited and the hostname field indicate
when/whether/from where a team visited its team web interface.

team_affiliation

affilid is the reference ID and name the name of the institution. country should be the 2 character
ISO 3166-1 alpha-2 abbreviation of the country and comments is a free form field that is displayed in
the jury interface.

Both for the country and the affiliation, a logo can be displayed on the scoreboard. For this to work,
the affilid must match a logo picture located in www/images/affiliations/<affilid>.png and
country must match a (flag) picture in www/images/countries/<country>.png. All country flags
are present there, named with their 2-character ISO codes. See also www/images/countries/README.
If either file is not present the respective ID string will be printed instead.

team_category

categoryid is the reference ID and name is a string: the name of the category. sortorder is the order
at which this group must be sorted in the scoreboard, where a higher number sorts lower and equal
sort depending on score.

The color is again a CSS colour specification used to discern different categories easily. See also section
5.2.1 (Scoreboard: colours).

The visible flag determines whether teams in this category are displayed on the public/team score-
board. This feature can be used to remove teams from the public scoreboard by assigning them to a
separate, invisible category.

testcase

The testcase table contains testdata for each problem; testcaseid is a unique identifier, input and
output contain the testcase input/output and md5sum_input, md5sum_output their respective md5
hashes to check for up-to-date-ness of cached versions by the judgehosts. probid is the corresponding
problem and rank determines the order of the testcases for one problem. description is an optional
description for this testcase. See also 3.4 (providing testdata).

3.2 Contest milestones

The contest table specifies timestamps for each contest that mark specific milestones in the course of the
contest.

The triplet activatetime, starttime and endtime define when the contest runs and are required fields (acti-
vatetime and starttime may be equal).

http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

CHAPTER 3. SETTING UP A CONTEST 25

activatetime is the moment when a contest first becomes visible to the public and teams (potentially replacing
a previous contest that was displayed before). Nothing can be submitted yet and the problem set is not
revealed. Clarifications can be viewed and sent.

At starttime, the scoreboard is displayed and submissions are accepted. At endtime the contest stops. New
incoming submissions will be stored but not processed; unjudged submissions received before endtime will
still be judged.

freezetime and unfreezetime control scoreboard freezing. freezetime is the time after which the public and
team scoreboard are not updated anymore (frozen). This is meant to make the last stages of the contest
more thrilling, because no-one knows who has won. Leaving them empty disables this feature. When using
this feature, unfreezetime can be set to automatically ‘unfreeze’ the scoreboard at that time. For a more
elaborate description, see also section 5.2.3 (Scoreboard: freezing and defrosting).

The scoreboard, results and clarifications will remain to be displayed to team and public after a contest,
until an activatetime of a later contest passes.

All events happen at the first moment of the defined time. That is: for a contest with starttime "12:00:00"
and endtime "17:00:00", the first submission will be accepted at 12:00:00 and the last one at 16:59:59.

The following ordering must always hold: activatetime <= starttime < (freezetime <=) endtime (<=
unfreezetime). No two contests may have overlap: there’s always at most one active contest at any time.

3.3 Team authentication

The authentication system lets domserver know which team it is dealing with. This system is modular,
allowing flexible addition of new methods, if required. The following methods are available by default for
team authentication.

3.3.1 PHP session with passwords (default)

Each team receives a password and PHP’s session management is used to keep track of which team is logged
in. This method is easiest to setup. It does require the administrator to generate passwords for all teams
(this can be done in the jury interface) and distribute those, though. Also, each team has to login each time
they (re)start their browser.

3.3.2 IP-address based

The IP-address of a team’s workstation is used as the primary means of authentication. The system assumes
that someone coming from a specific IP is the team with that IP listed in the team table. When a team
browses to the web interface, this is checked and the appropriate team page is presented.

This method has the advantage that teams do not have to login. A requirement for this method is that each
team computer has a separate IP-address from the view of the domserver, though, so this is most suitable
for onsite contests and might not work with online contests if multiple teams are located behind a router,
for example. Furthermore, with this method the command line submitclient can be used next to the web
interface submit.

There are three possible ways of configuring team IP-addresses.

CHAPTER 3. SETTING UP A CONTEST 26

Supply it beforehand

Before the contest starts, when entering teams into the database, add the IP that each team will have to
that team’s entry. When the teams arrive, everything will work directly and without further configuration
(except when teams switch workplaces). If possible, this is the recommended modus operandi, because it’s
the least hassle just before and during the contest.

Use one-time passwords

Supply the teams with a one time password with which to authenticate. Beforehand, generate passwords for
each team in the jury interface. When the test session (or contest) starts and a team connects to the web
interface and have an unknown IP, they will be prompted for username and password. Once supplied, the
IP is stored and the password is not needed anymore.

This is also a secure option, but requires a bit more hassle from the teams, and maybe from the organisers
who have to distribute pieces of paper.

Note: the web interface will only allow a team to authenticate themselves once. If an IP is set, a next
authentication will be refused (to avoid trouble with lingering passwords). In order to fully re-authenticate
a team, the IP address needs to be unset. You might also want to generate a new password for this specific
team. Furthermore, a team must explicitly connect to the team interface, because with an unknown IP, the
root DOMjudge website will redirect to the public interface.

Set IP upon first submission

This is only possible with the D (Dolstra protocol). The advantage is that no prior mapping needs to be
configured, but the disadvantage is that the team interface cannot be viewed until at least one submission
was made; there are also more constraints on the system. See the section on the Dolstra protocol for details.

3.3.3 Fixed team authentication

This method automatically authenticates each connection to the team web interface as a fixed, configurable
team. This can be useful for testing or demonstration purposes, but probably not for real use scenario’s.

3.3.4 Adding new authentication methods

The authentication system is modular and adding new authentication methods is fairly easy. The authentica-
tion is handled in the file lib/www/auth.team.php. Adding a new method amounts to editing the functions
in that file to handle your specific case.

3.4 Providing testdata

Testdata is used to judge the problems: when a submission run is given the input testdata, the resulting
output is compared to the reference output data. If they match exactly, the problem is judged to be
correct. For problems with a special compare script, testdata should still be provided in the same way, but
the correctness depends on the output of the custom compare script. Please check the documentation in
judge/compare_program.sh when using this feature.

The database has a separate table named testcase, which can be manipulated from the web interface. Under
a problem, click on the testcase link. There the files can be uploaded. The judgehosts cache a copy based

CHAPTER 3. SETTING UP A CONTEST 27

on MD5 sum, so if you need to make changes later, re-upload the data in the web interface and it will
automatically be picked up.

Testdata can also be imported into the system from a zip-bundle on each problem webpage. Each pair of
files <path-to-file>/<filename>.in and corresponding *.out found in the zip-bundle will be added as
testdata. Furthermore, when the file domjudge-problem.ini exists, then problem properties are read from
that file in INI-syntax. All keys from the problem table are supported, so an example contents could be:

probid = hello

name = Hello world!
allow_submit=false
color=blue

Testcases will be added to those already present and imported properties will overwrite those in the database.
A completely new problem can also be imported from a zip-bundle on the problems overview webpage; in
that case, note that if the file domjudge-problem.ini is not present, a default value is chosen for the
unmodifiable primary key probid (as well as for the other keys).

3.5 Start the daemons

Once everything is configured, you can start the daemons. They all run as a normal user on the system.
The needed root privileges are gained by the setuid-root programs only when required.

• One or more judgedaemons, one on each judgehost;

• Optionally the balloon notification daemon.

3.6 Check that everything works

If the daemons have started without any problems, you’ve come a long way! Now to check that you’re ready
for a contest.

First, go to the jury interface: http://www.your-domjudge-location/jury. Look under all the menu items
to see whether the displayed data looks sane. Use the config-checker under ‘Admin Functions’ for some sanity
checks on your configuration.

Go to a team workstation and see if you can access the team page and if you can submit solutions.

Next, it is time to submit some test solutions. If you have the default Hello World problem enabled, you can
submit some of the example sources from under the doc/examples directory. They should give ‘CORRECT’.

You can also try some (or all) of the sources under tests. Use make check to submit a variety of tests; this
should work when the submit client is available and the default example problems are in the active contest.
There’s also make stress-test, but be warned that these tests might crash a judgedaemon. The results
can be checked in the web interface; each source file specifies the expected outcome with some explanations.
For convenience, there is also a script check-judgings; this will automatically check whether submitted
sources from the tests directory were judged as expected. Note that a few sources have multiple possible
outcomes: these must be verified manually.

When all this worked, you’re quite ready for a contest. Or at least, the practice session of a contest.

CHAPTER 3. SETTING UP A CONTEST 28

3.7 Testing jury solutions

Before running a real contest, you and/or the jury will want to test the jury’s reference solutions on the
system.

There is no special feature for testing their solutions under DOMjudge. The simplest approach is to submit
these solutions as a special team. This method requires a few steps and some carefulness to prevent a
possible information leak of the problemset. It is assumed that you have completely configured the system
and contest and that all testdata is provided. To submit the jury solutions the following steps have to be
taken:

• change the contest time to make the contest currently active;

• setup a special team at a local computer;

• submit the jury solutions as that team;

• check that all solutions are judged as expected in the jury interface;

• revert the contest to the original times.

Note that while the contest time is changed to the current time, anyone might be able to access the public
or team web-interface: there’s not too much there, but on the scoreboard the number of problems and their
titles can be read. To prevent this information leak, one could disconnect the DOMjudge server, judgehosts
and the computer used for submitting from the rest of the network.

Furthermore, you should make sure that the team you submit the solutions as, is in a category which is set
to invisible, so that it doesn’t show up on the public and team scoreboard. The sample team "DOMjudge"
could be used, as it is in the "Organisation" category, which is not visible by default.

4 Team Workstations

Here’s a quick checklist for configuring the team workstations. Of course, when hosting many teams, it
makes sense to generate a preconfigured account that has these features and can be distributed over the
workstations.

1. The central tool teams use to interact with DOMjudge is the web browser.

• If possible, set the Home Page to your.domjudge.location/team/

• Go to the team page and check if this team is correctly identified.

• If using https and a self signed certificate, add this certificate to the browser certificate list to
prevent annoying dialogs.

2. Make sure compilers for the supported languages are installed and working.

3. Provide teams with the command line submit client and check that it works.

4. Make the sample in- and output data from the problem set available.

5. Add your SSH key to their authorized_keys file, so you can always access their account for wiping and
emergencies.

6. Check that internet access is blocked.

29

5 Web interface

The web interface is the main point of interaction with the system. Here you can view submissions coming
in, control judging, view the standings and edit data.

5.1 Jury and Administrator view

The jury interface has two possible views: one for jury members, and one for DOMjudge administrators.
The second view is the same as the jury view, but with more features added. Which to show is decided by
using the HTTP authentication login used to access the web interface; you can list which HTTP users are
admin with the variable DOMJUDGE_ADMINS in etc/domserver-config.php.

This separation is handy as a matter of security (jury members cannot (accidentally) modify things that
shouldn’t be) and clarity (jury members are not confused / distracted by options they don’t need).

Options offered to administrators only:

• Adding and editing any contest data

• Managing team passwords

• The config checker

• Refreshing the scoreboard & hostname caches

• Rejudge ’correct’ submissions

• Restart ’pending’ judgings

Furthermore, some quick link menu items might differ according to usefulness for jury or admins.

A note on rejudging: it is policy within the DOMjudge system that a correct solution cannot be reverted
to incorrect. Therefore, administrator rights are required to rejudge correct or pending (hence, possibly
correct) submissions. For some more details on rejudging, see the jury manual.

5.2 The scoreboard

The scoreboard is the canonical overview for anyone interested in the contest, be it jury, teams or the general
public. It deserves to get a section of its own.

5.2.1 Colours and sorting

Each problem can be associated with a specific colour, e.g. the colour of the corresponding balloon that is
handed out. DOMjudge can display this colour on the scoreboard, if you fill in the ‘color’ attribute in the
‘problem’ table; set it to a valid CSS colour value (e.g. ‘green’ or ‘#ff0000’, although a name is preferred for
displaying colour names).

It’s possible to have different categories of teams participating, this is controlled through the ‘team_category’
table. Each category has its own background colour in the scoreboard. This colour can be set with the ‘color’
attribute to a valid CSS colour value.

30

http://www.w3.org/TR/REC-CSS1#color-units

CHAPTER 5. WEB INTERFACE 31

If you wish, you can also define a sortorder in the category table. This is the first field that the scoreboard is
sorted on. If you want regular teams to be sorted first, but after them you want to sort both spectator- and
business teams equally, you define ‘0’ for the regular category and ‘1’ for the other categories. To completely
remove a category from the public (but not the jury) scoreboard, the category visible flag can be set to ‘0’.

5.2.2 Starting and ending

The displayed scoreboard will always be that of the most recently started contest. The scoreboard is never
displayed for a contest that still has to start. In other words, the scores will become visible on the first
second of a contest start time.

When the contest ends, the scores will remain to be displayed, until a next contest starts.

5.2.3 Freezing and defrosting

DOMjudge has the option to ‘freeze’ the public- and team scoreboards at some point during the contest.
This means that scores are no longer updated and remain to be displayed as they were at the time of the
freeze. This is often done to keep the last hour interesting for all. The scoreboard freeze time can be set
with the ‘freezetime’ attribute in the contest table.

The scoreboard freezing works by looking at the time a submission is made. Therefore it’s possible that
submissions from (just) before the freezetime but judged after it can still cause updates to the public
scoreboard. A rejudging during the freeze may also cause such updates.

If you do not set any freeze time, this option does nothing. If you set it, the public- and team scoreboards
will not be updated anymore once this time has arrived. The jury will however still see the actual scoreboard.

Once the contest is over, the scores are not automatically ‘unfrozen’. This is done to keep them secret until
e.g. the prize ceremony. You can release the final scores to team- and public interfaces when the time is
right. You can do this either by setting a predefined ‘unfreezetime’ in the contest table, or you push the
‘unfreeze scores now’ button in the jury web interface, under contests.

5.2.4 Clickability

Almost every cell is clickable in the jury interface and gives detailed information relevant to that cell. This
is (of course) not available in the team and public scoreboards, except that in the team and public interface
the team name cell links to a page with some more information and optionally a team picture.

5.2.5 Caching

The scoreboard is not recalculated on every page load, but rather cached in the database. It should be safe
for repeated reloads from many clients. In exceptional situations (should never occur in normal operation,
e.g. a bug in DOMjudge), the cache may become inaccurate. The jury administrator interface contains an
option to recalculate a fresh version of the entire scoreboard. You should use this option only when actually
necessary, since it puts quite a load on the database.

5.2.6 Exporting to an external website

In many cases you might want to create a copy of the scoreboard for external viewing from the internet. The
command bin/static_scoreboard is provided just for that. It writes to stdout a version of the scoreboard

CHAPTER 5. WEB INTERFACE 32

with refresh meta-tags and links to team pages removed. This command can for example be run every
minute and the output be placed as static content on a publicly reachable webserver.

5.3 Balloons

In many contests balloons are handed out to teams that solve a particular problem. DOMjudge can help
in this process: both a web interface and a notification daemon are available to notify that a new balloon
needs to be handed out. Note that only one should be used at a time.

The web based tool is reachable from the main page in the jury interface, where each balloon has to be
checked off by the person handing it out.

For the daemon, set the BALLOON_CMD in bin/balloons to define how notifications are sent. Examples
are to mail to a specific mailbox or to send prints to a printer. When configured, start bin/balloons and
notification will start.

Notifications will continue even after the scoreboard is frozen, although a warning is printed on the notifica-
tion. Stop the balloons daemon when you don’t want balloons to be handed out anymore.

6 Security

This judging system was developed with security as one of the main goals in mind. To implement this
rigorously in various aspects (restricting team access to others and the internet, restricting access to the
submitted programs on the jury computers, etc...) requires root privileges to different parts of the whole
contest environment. Also, security measures might depend on the environment. Therefore we have decided
not to implement security measures which are not directly related to the judging system itself. We do have
some suggestions on how you can setup external security.

6.1 Considerations

Security considerations for a programming contest are a bit different from those in normal conditions: nor-
mally users only have to be protected from deliberately harming each other. During a contest we also have
to restrict users from cooperatively communicating, accessing restricted resources (like the internet) and
restrict user programs running on jury computers.

We expect that chances are small that people are trying to cheat during a programming contest: you have
to hack the system and make use of that within very limited time. And you have to not get caught and
disqualified afterwards. Therefore passive security measures of warning people of the consequences and only
check (or probe) things will probably be enough.

However we wanted the system to be as secure as possible within reason. Furthermore this software is open
source, so users can try to find weak spots before the contest.

6.2 Internal security

Internal security of the system relies on users not being able to get to any vital data (jury input/output
and users’ solutions). Data is stored in two places: files on the jury account and in the SQL database.
Files should be protected by preventing permission to the relevant directories. Furthermore, the (jury) web
interface offers a view and allows modification of a lot of sensitive data.

Database access is protected by passwords. The default permissions allow connections from all hosts, so
make sure you restrict this appropriately or choose strong enough passwords.

Note: database passwords are stored in etc/dbpasswords.secret. This file has to be non-readable to
teams, but has to be readable to the web server to let the jury web interface work. A solution is to make it
readable to a special group the web server runs as. This is done when using the default configuration and
installation method and when make install-{domserver,judgehost} is run as root. The webserver group
can be set with configure –with-webserver-group=GROUP which defaults to www-data.

Judgehosts and the domserver communicate with each other through the MySQL protocol. By default,
MySQL does not encrypt these connections. Refer to the MySQL manual to configure SSL on client con-
nections; alternatively you can employ an SSH tunnel or ensure in the network setup that these connections
are separated from the team network.

The jury web interface is protected by HTTP Authentication. These credentials are essentially sent plain-
text, so we advise to setup HTTPS at least for the jury interface, but preferably for all web interfaces. By
default the domjudge_jury user will be given full access. You can choose to add more users to the file
etc/htpasswd-jury. In etc/domserver-config.php you can add these users to the list DOMJUDGE_ADMINS.

33

CHAPTER 6. SECURITY 34

Most data-modification functions are restricted to only users in this list. See also the judge manual for some
more details.

Secondly, the submitted sources should not be interceptable by other teams (even though that, if these would
be sent clear-text, a team would normally need to be root/administrator on their computer to intercept this).
This can be accomplished by using HTTPS for the web interface. The D (Dolstra submission method) by
default uses SSH to send files over the network.

There are multiple authentication methods for teams, each having its own issues to check for.

When using IP address authentication, one has to be careful that teams are not able to spoof their IP (for
which they normally need root/administrator privileges), as they would then be able to view other teams’
submission info (not their code) and clarifications and submit as that team. Note: This means that care has
to be taken e.g. that teams cannot simply login onto one another’s computer and spoof their identity.

When using PHP sessions, authentication data is sent via HTTP, so we strongly advise to use HTTPS in
that case.

6.3 Root privileges

A difficult issue is the securing of submitted programs run by the jury. We do not have any control over
these sources and do not want to rely on checking them manually or filtering on things like system calls
(which can be obscured and are different per language).

Therefore we decided to tackle this issue by running these programs in a environment as restrictive as
possible. This is done by setting up a minimal chroot environment. For this, root privileges on the judging
computers and statically compiled programs are needed. By also limiting all kinds of system resources
(memory, processes, time, unprivileged user) we protect the system from programs which try to hack or
could crash the system. However, a chroot environment does not restrict network access, so there lies a
possible security risk that has to be handled separately.

6.4 File system privileges

Of course you must make sure that the file system privileges are set such that there’s no unauthorised access
to sensitive data, like submitted solutions or passwords. This is quite system dependent. At least JUDGEDIR
should not be readable by other users than DOMjudge.

6.4.1 Permissions for the web server

Make sure that the web server serving the DOMjudge web interface pages has correct permissions to the www,
lib, etc directory trees. The www and lib trees can safely set to be readable and accessible. Care should be
taken with the etc dir: the domserver-{config,static}.php, htpasswd-* and dbpasswords.secret files
should all be readable, but dbpasswords.secret and the htpasswd files should not be readable by anyone
else. This can be done for example by setting the etc directory to owner:group <DOMjudge account>:<Web
server group> and permissions drwxr-x–-, denying users other than yourself and the web server group access
to the configuration and password files.

If you want the web server to also store incoming submission sources on the file system (next to the database),
then SUBMITDIR must be writable for the web server, see also 2.10 (submission methods).

You should take care not to serve any files over the web that are not under the DOMjudge ’www/’ directory,
because they might contain sensitive data (e.g. those under etc/). DOMjudge comes with .htaccess files

CHAPTER 6. SECURITY 35

that try to prevent this, but double-check that it’s not accessible.

6.5 External security

The following security issues are not handled by DOMjudge, but left to the administrator to set up.

Network traffic between team- and jury-computers and the internet should be limited to what is allowed.
Possible ways of enforcing this might be: monitor traffic, modify firewall rules on team computers or (what
we implemented with great satisfaction) put all team computers behind a firewalling router.

Solutions are run within a restricted (chroot) environment on the judge computers. This however does not
restrict network access, so a team could try to send in a solution that tries to send input testdata back to
them, access the internet, etc... A solution to this problem is to disallow all network traffic for the test user
on the judge computers. On Linux, this can be accomplished by modifying the iptables, adding a rule like:

iptables -I OUTPUT -o <network_interface> -m owner --uid-owner <testuser_uid> -j REJECT

A Common problems and their
solutions

A.1 Java compilers and the chroot

Java is difficult to deal with in an automatic way. It is probably most preferable to use Sun Java, because
that’s the version contestants will be used to. The GNU Compiler for Java (GCJ) is easier to deal with but
may lack some features.

With the default configuration, submitted programs are run within a minimal chroot environment. For this
the programs have to be statically linked, because they do not have access to shared libraries.

For most languages compilers support this, but for Java, this is a bit problematic. The Sun Java compiler
‘javac’ is not a real compiler: a bytecode interpreter ‘java’ is needed to run the binaries and thus this cannot
simply run in a chroot environment.

There are some options to support Java as a language:

1. One can disable the chroot environment in etc/judgehost-config.php by disabling USE_CHROOT.
Disabling the chroot environment removes this extra layer of security against submissions that attempt
to cheat, but it is a simple solution to getting Java to work.

2. Next, one can build a bigger chroot environment which contains all necessary ingredients to let Sun
Java work within it. DOMjudge supports this with some manual setup.

First of all, a chroot tree with Java support must be created. The script bin/dj_make_chroot creates
one from Debian GNU/Linux sources; run that script without arguments for basic usage information.
Next, edit the script lib/judge/chroot-startstop.sh and adapt it to work with your local system
and uncomment the script in etc/judgehost-config.php.

3. As an alternative the gcj compiler from GNU can be used instead of Sun’s version. This one generates
true machine code and can link statically. However a few function calls cannot be linked statically
(see ‘GCJ compiler warnings’ in this FAQ). Secondly, the static library libgcj.a doesn’t seem to be
included in all GNU/Linux distributions: at least not in RedHat Enterprise Linux 4.

A.2 The Sun Java virtual machine (jvm) and memory limits

DOMjudge imposes memory limits on submitted solutions. These limits are imposed before the compiled
submissions are started. On the other hand, the Sun jvm is started via a compile-time generated script
which is run as a wrapper around the program. This means that the memory limits imposed by DOMjudge
are for the jvm and the running program within it. As the jvm uses approximately 300MB, this reduces the
limit by this significant amount. See judge/compile_java_javac.sh for the implementation details.

If you see error messages of the form

Error occurred during initialization of VM
java.lang.OutOfMemoryError: unable to create new native thread

or

36

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 37

Error occurred during initialization of VM
Could not reserve enough space for object heap

Then the problem is probably that the jvm needs more memory than what is reserved by the Java compile
script. You should try to increase the MEMRESERVED variable in judge/compile_java.sh and check that the
total memory limit MEMLIMIT in etc/judgehost-config.php is larger than MEMRESERVED.

A.3 Java class naming

Java requires a specific naming of the main class. When declaring the main class public, the filename must
match the class name. Therefore one should not declare the main class public; from experience however,
many teams do so. Secondly, the Java compiler generates a bytecode file depending on the class name. There
are two ways to handle this.

The simplest Java compile script compile_java_javac.sh requires the main class to be named Main with
method

public static void main(String args[])

The alternative (and default) is to use the script compile_java_javac_detect.sh, which automatically
detects the main class and even corrects the source filename when it is declared public.

When using the GNU gcj compiler, the same holds and two similar scripts compile_java_gcj.sh and
compile_java_gcj_detect.sh are available.

A.4 GCJ compiler warnings

When using the GNU GCJ compiler for compiling Java sources, it can give a whole lot of warning messages
of the form

/usr/lib/gcc-lib/i386-linux/3.2.3/libgcj.a(gc_dlopen.o)(.text+0xbc):
In function ‘GC_dlopen’: Using ’dlopen’ in statically linked
applications requires at runtime the shared libraries from the glibc
version used for linking

These are generated because you are trying to compile statically linked sources, but some functions can not
be static, e.g. the ‘dlopen’ function above. These are warnings and can be safely ignored, because under
normal programming contest conditions people are not allowed to use these functions anyway (and they are
not accessible within the chroot-ed environment the program is run in).

To filter these warnings, take a look at judge/compile_java_gcjmod.sh and replace or symlink
judge/compile_java.sh by/to this file.

A.5 Error: ‘submit_copy.sh failed with exitcode XX’

This error can have various causes. First of all: check the submit.log file for more complete error messages.

Assuming the default configuration where submit_copy.sh uses ‘scp’, we have found that shell initialisation
scripts might contain statements which generate errors: scp runs the user’s default shell when copying
submission files and when the shell dies (e.g. because of not having a terminal), the copying fails.

Another cause might be that you do not have automatic access to the team’s account (e.g. using ssh keys).

APPENDIX A. COMMON PROBLEMS AND THEIR SOLUTIONS 38

A.6 C#/mono support

Using the mono compiler and runtime for C# gives rise to similar problems as with Java. Although the C#
language has been added to DOMjudge, there’s no support yet to run it within a chroot environment. So in
that case, USE_CHROOT must be disabled.

A.7 Memory limit errors in the web interface

E.g. when uploading large testdata files, one can run into an error in the jury web interface of the form:

Fatal error: Allowed memory size of XX bytes exhausted (tried to
allocate YY bytes) in */home/domjudge/system/lib/lib.database.php*
on line *154*

This means that the PHP engine has run out of memory. The solution is to raise the memory limits for PHP.
This can be done by either editing etc/apache.conf and raising the memory_limit, upload_max_filesize
and post_max_size values under the jury directory or by directly editing the global Apache or php.ini
configuration.

A.8 Compiler errors: ‘runguard: root privileges not dropped’

Compiling failed with exitcode 255, compiler output:
/home/domjudge/system/bin/runguard: root privileges not dropped

When the above error occurs on submitting any source, this indicates that you are running the judgedaemon
as root user. You should not run any part of DOMjudge as root. Either run it as yourself or e.g. create a
user domjudge under which to install and run everything. Also do not confuse this with the domjudge-run
user: this is a special user to run submissions as and should also not be used to run normal DOMjudge
processes; this user is only for internal use.

B Multi-site contests

This manual assumed you are running a singe-site contest; that is, the teams are located closely together,
probably in a single physical location. In a multi-site or distributed contest, teams from several remote
locations use the same DOMjudge installation. An example is a national contest where teams can participate
at their local institution.

DOMjudge supports such a setup on the condition that a central installation of DOMjudge is used to which
the teams connect over the internet. It is here where all submission processing and judging takes place.
Because DOMjudge uses a web interface for all interactions, teams and judges will interface with the system
just as if it were local. Still, there are some specific considerations for a multi-site contest.

Network: there must be a relatively reliable network connection between the locations and the central
DOMjudge installation, because teams cannot submit or query the scoreboard if the network is down.
Because of travelling an unsecured network, you may want to consider HTTPS for encrypting the traffic. If
you want to limit internet access, it must be done in such a way that the remote DOMjudge installation can
still be reached.

Team authentication: the IP-based authentication will still work as long as each team workstation has a
different public IP address. If some teams are behind a NAT-router and thus all present themselves to
DOMjudge with the same IP-address, the PHP sessions authentication scheme needs to be used.

Judges: if the people reviewing the submissions will be located remotely as well, it’s important to agree
beforehand on who-does-what, using the submissions claim feature and how responding to incoming clarifi-
cation requests is handled. Having a shared chat/IM channel may help when unexpected issues arise.

Scoreboard: by default DOMjudge presents all teams in the same scoreboard. Per-site rankings are not
currently possible.

39

C DOMjudge and the ICPC validator
interface standard

DOMjudge supports the ICPC validator interface standard, which can be found at: <http://www.ecs.
csus.edu/pc2/doc/valistandard.html>

The invocation code (judge/testcase_run.h) adheres to the invocation interface. It passes as a 5th optional
parameter to the validator program the filename in which it expects a difference output between the program
and jury output (parameters 2 and 3 respectively).

Parsing of the result XML file (in the result interface) is done with the ‘xsltproc’ program, which is part of
the

GNOME libxslt package <http://www.xmlsoft.org/XSLT/> . The exitcode of the validator program should
be zero, otherwise an internal error is generated.

DOMjudge currently has two validator scripts: judge/compare and judge/compare_program.sh. The
first does a compare with a plain diff, the second script calls an external program for checking (e.g.
judge/check_float for comparison of floating point results). When passed a 5th parameter, this is in-
terpreted as a filename to which these scripts will write a comparison of the program and jury output. Both
scripts also generate XML compliant output, which is written to the result file specified in parameter 4 and
fully complies with the validator standard.

40

http://www.ecs.csus.edu/pc2/doc/valistandard.html
http://www.ecs.csus.edu/pc2/doc/valistandard.html
http://www.xmlsoft.org/XSLT/

D Submitdaemon and the Dolstra
protocol

In the default situation, teams can submit their solutions either via browsing to the web interface, or by
using the command line submit client, which behind the scenes employs the same web interface to actually
make the submission. This setup suffices for many environments.

The Dolstra protocol is different in that it uses a submitdaemon running on the domserver. One advantage
is that submissions can be made before the IP address of the team is known. This authentication is fortified
by the following process. When a client connects, it does not send the submission file, but only a reference
to a randomised and not publicly visible file. This file is then copied from server side with the submit_copy
script. This makes it impossible for teams to spoof a submission for a different team: the server ‘calls back’
the team the submitter identified himself as and checks for existence of the advertised file. Because filenames
are randomised and invisible (within the $HOME/.domjudge directory by default), it is also impossible for
someone to guess another team’s filename and submit it for them.

The figure below is a graphical representation of the flow of a submission. Arrows with filled lines indicate
the flow of the submission file, while dot-dash lines indicate flow of metadata about the submission. Each
line where no protocol of data transfer is given, are just file system operations. Squares are programs and
rounded squares are storage locations.

Figure D.1: Submission flow diagram including Dolstra protocol.

To have DOMjudge configure the IP upon first submission in this way, set option STRICTIPCHECK to 0. In
that case, we start out without IP’s (and the web interface will not be accessible), but as soon as a team
connects with the command line submit client to the submitdaemon, they are authenticated by correctly
submitting a file and the IP is registered and everything works as normal.

The connect can happen during the test session, so during the real contest everything is fully available.
This is a secure way of authenticating teams, which requires no passwords or IP configuration, but teams
must submit via the command line submit client to the command line daemon before they can access their
teampage.

41

APPENDIX D. SUBMITDAEMON AND THE DOLSTRA PROTOCOL 42

D.1 Dolstra protocol requirements

If you want to use the Dolstra submit method (next to / instead of the HTTP functionality) you need to
satisfy the following requirements.

The submitdaemon needs to run at the domserver, and receive connections on a configurable TCP port,
default 9147.

Team accounts need to be accessible via SSH on the jury computers (a SSH public key of the jury account
should be installed on all team accounts to provide key-based access), and a shared filesystem (e.g. NFS) is
needed between the team computers and the domserver. Alternatively, another means of providing access
from the server can be configured, see the file submit/submit_copy.sh for more details.

To build the command line client under Windows, you need to have at least Windows XP and cygwin version
1.7 for support of the complete netdb.h headers.

	DOMjudge overview
	Features
	Requirements
	Copyright and licencing
	Contact

	Installation and configuration
	Quick installation
	Concepts
	Requirements
	Installation system
	Configuration
	Configuration of languages
	Configuration of special run and compare programs
	Alerting system
	Other configurable scripts
	Submission methods
	Database installation
	Web server configuration
	Logging & debugging
	Installation of a judgehost
	Building and installing the submit client
	(Re)generating documentation and the team manual
	Optional features
	Upgrading

	Setting up a contest
	Configure the contest data
	Contest milestones
	Team authentication
	Providing testdata
	Start the daemons
	Check that everything works
	Testing jury solutions

	Team Workstations
	Web interface
	Jury and Administrator view
	The scoreboard
	Balloons

	Security
	Considerations
	Internal security
	Root privileges
	File system privileges
	External security

	Common problems and their solutions
	Java compilers and the chroot
	The Sun Java virtual machine (jvm) and memory limits
	Java class naming
	GCJ compiler warnings
	Error: `submit_copy.sh failed with exitcode XX'
	C#/mono support
	Memory limit errors in the web interface
	Compiler errors: `runguard: root privileges not dropped'

	Multi-site contests
	DOMjudge and the ICPC validator interface standard
	Submitdaemon and the Dolstra protocol
	Dolstra protocol requirements

